Наука систематика. Принципы современной систематики. Основные систематические категории царства животных. Понятие вида, популяции. Особенности строения растений Объект изучения систематики

Биологи́ческая система́тика - научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов.

Основные цели систематики:

наименование (в том числе и описание) таксонов,

диагностика (определение, то есть нахождение места в системе),

экстраполяция, то есть предсказание признаков объекта, основывающееся на том, что он относится к тому или иному таксону. Например, если на основании строения зубов мы отнесли животное к отряду грызунов, то можем предполагать, что у него имеется длинная слепая кишка и стопоходящие конечности, даже если нам неизвестны эти части тела.

Современные классификации живых организмов построены по иерархическому принципу. Различные уровни иерархии (ранги) имеют собственные названия (от высших к низшим): царство, тип или отдел, класс, отряд или порядок, семейство, род и, собственно, вид. Виды состоят уже из отдельных особей. Принято, что любой конкретный организм должен последовательно принадлежать ко всем семи категориям. В сложных системах часто выделяют дополнительные категории, например, используя для этого приставки над- и под- (надкласс, подтип и т. п.). Каждый таксон должен иметь определённый ранг, то есть относиться к какой-либо таксономической категории. Сравнительно новым является понятие надцарства, или биологического домена. Оно было предложено в 1990 году Карлом Вёзе и ввело разделение всех биологических таксонов на три домена: 1) эукариоты (домен, объединивший все организмы, клетки которых содержат ядро); 2) бактерии; 3) археи.

Вид (лат. species) - основная структурная единица биологической систематики живых организмов (животных, растений и микроорганизмов) - таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды.

Вид-элементарная единица всего живого.

Популя́ция (от лат. populatio - население) - это совокупность организмов одного вида, длительное время обитающих на одной территории.

Популяция - совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.



6. Клеточная теория, сформулируйте основные положения клеточной теории. Как Вы считаете, какова роль этой теории в биологии?

Клеточная теория - основополагающая для биологии теория, сформулированная в середине XIX века, предоставившая базу для понимания закономерностей живого мира и для развития эволюционного учения. Маттиас Шлейден и Теодор Шванн сформулировали клеточную теорию, основываясь на множестве исследований о клетке (1838). Рудольф Вирхов позднее (1858) дополнил её важнейшим положением (всякая клетка происходит от другой клетки).

Шлейден и Шванн, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна:

1) Все животные и растения состоят из клеток.

2) Растут и развиваются растения и животные путём возникновения новых клеток.

3) Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории:

1) Клетка - элементарная единица живого, вне клетки жизни нет.

2) Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.

3) Клетки всех организмов гомологичны.

4) Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.

5) Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.

6) Клетки многоклеточных организмов тотипотентны(способность клетки путем деления дать начало любому клеточному типу организма.)

Дополнительные положения клеточной теории.

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются. ннанабор достаточно произволен.

1) Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см. ниже).

2) В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям, хлоропластам, генам и хромосомам.

3) Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).

4) Клетки многоклеточных тотипотентны(способность клетки путем деления дать начало любому клеточному типу организма.), то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

7. Почему клетку определяют в качестве элементарной единицы жизни и в чем заключаются доказательства того, что клетка действительна, является элементарной единицей жизни?

Тоесть все живые организмы либо является многоклеточными(состоят из большого кол-ва клеток) или одноклеточными, но все они имеют клеточную структуру строения. Бактерии находятся на промежутке живой и неживой природы, но и их строение близко к клеточному. Все вещества из которых состоит клетка, не являются составными живой природы вне клетки. Таким образом, как в математике существуют единицы измерения, так и в живой природе единицей измерения является клетка. Вне клетки жизни нет. Растут и развиваются растения и животные путём возникновения новых клеток.

8. Как вы понимаете различия между доядерными и ядерными организмами? Гипотезы происхождения эукариотических клеток.

Особенности строения доядерных организмов:

1) отсутствие оформленного ядра, ядерной оболочки, ядерное вещество располагается в цитоплазме;

2) ДНК сосредоточена в одной хромосоме, имеющей форму кольца и располагающейся в цитоплазме;

3) отсутствие ряда органоидов: митохондрий, эндоплазматической сети, аппарата Гольджи;

4) все организмы этой группы одноклеточные.

Особенности строения ядерных организмов:

1) наличие в клетке оформленного ядра, отграниченного от цитоплазмы оболочкой с порами;

2) наличие всего комплекса органоидов цитоплазмы: митохондрий, аппарата Гольджи, лизосом, рибосом, эндоплазматической сети, клеточного центра, а также плазматической мембраны и наружной оболочки у клеток растений, грибов;

3) наличие нескольких хромосом, расположенных в ядре.

Ископаемые останки клеток эукариотического типа обнаружены в породах, возраст которых не превышает 1,0-1,4 млрд. лет. Более позднее возникновение, а также сходство в общих чертах их основных биохимических процессов(самоудвоение ДНК, синтез белка на рибосомах) заставляют думать о том, что эукариотические клетки произошли от предка, имевшего прокариотическое строение.

Наиболее популярна в настоящее время симбиотическая гипотеза происхождения эукориотических клеток, согласно которой основой, или клеткой-хозяином, в эволюции клетки эукариотического типа послужил анаэробный прокариот , способный лишь к амебоидному движению. Переход к аэробному дыханию связан с наличием в клетке митохондрий, которые произошли путём изменений симбионтов – аэробных бактерий, проникших в клетку – хозяина и сосуществовавших с ней.

Согласно инвагинационной гипотезе , предковой формой эукариотической клетки был аэробный прокариот . Внутри такой клетки – хозяина находилось одновременно несколько геномов, первоначально прикреплявшихся к клеточной оболочке. Органеллы, имеющие ДНК, а также ядро, возникли путём впячивания и отшнуровывания участков оболочки с последующей функциональной специализацией в ядро, митохондрии, хлоропласты. В процессе дальнейшей эволюции произошло усложнение ядерного генома, появилась система цитоплазматических мембран.

9. Что вы знаете о бактериях и об их свойствах? Понятие и генотипе и фенотипе микроорганизмов. Перенос генетической информации – конъюгация, трансдукция, трансформация.

БАКТЕРИИ, простые одноклеточные микроскопические организмы, принадлежащие к царству Prokaryotae (прокарио-ты). У них нет четко выделенного ядра, в большинстве их отсутствует ХЛОРОФИЛЛ. Многие из них обладают подвижностью, плавают при помощи хлыстообразных жгутиков. Размножаются преимущественно делением. В неблагоприятных условиях многие из них способны консервироваться внутри спор, обладающих высокой сопротивляемостью благодаря плотным защитным оболочкам. Подразделяются на АЭРОБНЫЕ И АНАЭРОБНЫЕ. Хотя патогенные бактерии являются причиной большинства человеческих заболеваний, многие из них безобидны или даже полезны для человека, поскольку составляют важное звено ПИЩЕВЫХ ЦЕПЕЙ, например, они способствуют переработке растительных и животных тканей, преобразованию азота и серы в АМИНОКИСЛОТЫ и другие соединения, которые могут использовать растения и животные; В некоторых бактериях содержится хлорофилл, и они участвуют в ФОТОСИНТЕЗЕ; Тысячелетиями человек использовал молочнокислых бактерий для производства сыра, йогурта, кефира, уксуса, а также квашения; Благодаря быстрому росту и размножению, а также простоте строения, бактерии активно применяются в научных исследованиях по молекулярной биологии, генетике, генной инженерии и биохимии; В кишечнике человека в норме обитает от 300 до 1000 видов бактерий общей массой до 1 кг, а численность их клеток на порядок превосходит численность клеток человеческого организма. Они играют важную роль в переваривании углеводов, синтезируют витамины, вытесняют патогенные бактерии. Можно образно сказать, что микрофлора человека является дополнительным «органом», который отвечает за пищеварение и защиту организма от инфекций.

Генотип – совокупность всех генов, присущих данному организму, т.е. его генетическая конституция.

Фенотип – внешнее, видимое проявление генотипа, обусловленное им и воздействием окружающей среды.

Конъюгация (от лат. conjugatio - соединение) - это процесс точного и тесного сближения гомологичных хромосом.

Трансдукция (от лат. transductio - перемещение) - процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.

Трансформация (генетика) - процесс поглощения клеткой организма свободной молекулы ДНК из среды и встраивания её в геном, что приводит к появлению у неё новых наследуемых признаков, характерных для организма-донора ДНК.

10. Строение и размножение вирусов. Какова роль вирусов в качестве экспериментальных моделей в молекулярной биологии? Сформулировать гипотезу о происхождении вирусов?

Ви́рус (лат. virus - яд) - субклеточный инфекционный агент, который может воспроизводиться только внутри живых клеток организма. По природе вирусы являются автономными генетическими элементами, имеющими внеклеточную стадию в цикле развития. Вирусы представляют собой микроскопические частицы, состоящие из молекул нуклеиновых кислот - ДНК или РНК (некоторые, например мимивирусы, имеют оба типа молекул), заключённые в белковую оболочку, способные инфицировать живые организмы. Белковую оболочку, в которую упакован геном, называют «капсид».

Просто организованные вирусы состоят из нуклеиновой кислоты и нескольких белков, образующих вокруг неё оболочку - капсид. Примером таких вирусов является вирус табачной мозаики. Его капсид содержит один вид белка с небольшой молекулярной массой. Сложно организованные вирусы имеют дополнительную оболочку - белковую или липопротеиновую; иногда в наружных оболочках сложных вирусов помимо белков содержатся углеводы. Примером сложно организованных вирусов служат возбудители гриппа и герпеса. Их наружная оболочка - это фрагмент ядерной или цитоплазматической мембраны клетки-хозяина, из которой вирус выходит во внеклеточную среду.

Вирусы размножаются путем воспроизводства себя в инфицированной клетке хозяина за счет собственной геномной нуклеиновой кислоты.

Размножение вирусов включает в себя три процесса: репликацию вирусной нуклеиновой кислоты, синтез вирусных белков и сборку вирионов. Размножение (репликация) вирусов – процесс, в ходе которого вирус, используя собственный генетический материал и синтетический аппарат клетки-хозяина, воспроизводит подобное себе потомство. В самом общем виде репликация вируса на уровне единичной клетки складывается из нескольких последовательных стадий: 1) прикрепление вируса к клеточной поверхности; 2) проникновение через наружные мембраны клетки; 3) обнажение генома; 4) синтез (транскрипция) нуклеиновой кислоты вируса с образованием дочерних молекул геномной РНК и, в случае ДНК-содержащих вирусов, информационной вирусной и-РНК; 5) синтез вирус-специфических белков; 6) сборка новых вирионов и выход их из пораженной клетки. Прохождение всех указанных стадий составляет один цикл размножения. На уровне системы клеток в виде ткани или органа циклы размножения часто бывают асинхронными, и вирус из пораженных клеток проникает в здоровые.

Молекулярная биология, изучающая фундаментальные основы жизни, является в значительной степени детищем микробиологии. В качестве основных объектов изучения в ней используют вирусы и бактерии, а основное направление - молекулярная генетика основана на генетике бактерий и фагов.

Существует три теории происхождения вирусов. Согласно первой вирусы - результат дегенерации одноклеточных организмов. В эволюции дегенерация - отнюдь не редкий процесс, но эта теория не объясняет разнообразие вирусов.

Между вирусами возможен обмен целыми блоками генетической информации, причем эти вирусы могут быть генетически весьма далеки друг от друга. Новые функции у вирусов могут возникать при неожиданном сочетании собственных генов и интеграции генов чужих. Увеличение генотипа вируса за счет неработающих генов может привести к образованию новых генов. Все эти механизмы делают вирусы одними из самых быстроизменяющихся организмов на земле.

11. Какова роль бактерий в природе и в жизни человека? Какие морфологические формы бактерий Вы знаете?


Бактерии активно участвуют в биогеохимических циклах на нашей планете (в т. ч. в круговороте большинства химических элементов). Деятельность бактерий имеет также глобальный характер. Например, из 4,3-1010 т (гигатонн) органического углерода, фиксированного в процессе фотосинтеза в мировом океане, около 4,0-1010 т минерализуется в водной толще, причём 70-75% из них - бактериями и некоторыми другими микроорганизмами, а суммарная продукция восстановленной серы в осадках океана достигает 4,92-108 т в год, что почти в три раза превышает суммарную годовую добычу всех видов серосодержащего сырья, используемого человечеством. Основная часть парникового газа - метана, поступающего в атмосферу, образуется бактерииями (метаногепами).

Бактерии являются ключевым фактором почвообразования, зон окисления сульфидных и серных месторождений, образования железных и марганцевых осадочных пород и т.д.

Некоторые бактерии вызывают тяжёлые заболевания у человека, животных и растений. Нередко они становятся причиной порчи селхоз. продукции, разрушения подземных частей зданий, трубопроводов, металлических конструкций шахт, подводных сооружений и т.д. Изучение особенностей жизнедеятельности этих бактерии позволяет разработать эффективные способы защиты от вызываемых ими повреждений. В то же время положительную роль бактерий для человека невозможно переоценить. С помощью бактерий получают вино, молочные продукты, закваски и др. продукты, ацетон и бутанол, уксусную и лимонную кислоты, некоторые витамины, ряд ферментов, антибиотики и каротиноиды. Бактерии участвуют в трансформации стероидных гормонов и др. соединений. Их используют для получения белка (в т. ч. ферментов) и ряда аминокислот. Применение бактерий для переработки с.-х. отходов в биогаз или этанол даёт возможность создания принципиально новых возобновляемых энергетических ресурсов. Бактерии используют для извлечения металлов (в т.ч. золота), увеличения нефтеотдачи пластов. Благодаря бактериям и плазмидам стало возможным развитие генетической инженерии. Изучение бактерий сыграло огромную роль в становлении многих направлений биологии, в медицине, агрономии и др. Велико их значение в развитии генетики, т.к. они стали классическом объектом для изучения природы генов и механизмов их действия. С бактериями связано установление путей метаболизма различных соединений и др.

Классификация бактерий

1. Кокки (овоидной формы) . При этом выделяют:
Микрококки – делятся в одной плоскости, располагаются одиночно и беспорядочно, патогенных нет, Грамм положительны.
Диплококки – делятся в одной плоскости, располагаются попарно. Некоторые имеют бобовидную форму (например, Neisseria gonorrheae). Грамм отрицательны.
Стрептококки – делятся в одной плоскости, располагаются в виде цепочки. Патогенны, вызывают ангину, скарлатину, гнойные заболевания, Грамм положительны.
Стафилококки – делятся в нескольких плоскостях, располагаются в виде грозди винограда. Наиболее частые возбудители гнойных заболеваний. Грамм положительны.

Тетракокки – делятся в двух взаимно перпендикулярных плоскостях, располагаются по четыре. Патогенны очень редко. Грамм положительны.
Сарцины – делятся в трех взаимно перпендикулярных плоскостях. Располагаются по восемь, шестнадцать, тридцать два. Особенно часто находят в воздухе. Условно патогенны. Грамм положительны.

2. Палочковидные формы . Их делят на:
Бактерии – спор не образуют.
Бациллы – аэробные спорообразующие бактерии. Грамм положительны. Например, B. antracis – возбудитель сибирской язвы.
Клостридии – анаэробные спорообразующие бактерии. Грамм положительны. Напоминают теннисную ракетку. Относят возбудителя столбняка, ботулизма, газовой гангрены.
Грамм отрицательные палочковидные формы. Относят кишечную палочку, иерсинию пестис (возбудитель чумы), возбудителей брюшного тифа, сальмонеллеза, бруцеллеза.

3. Извитые формы . Различают:
Вибрионы – один изгиб, который не превышает четверти оборота, хотя могут иметь вид палочки или запятой (холерный вибрион).
Спириллы – малое число витков (2-3)
Спирохеты – завитков от 10 до 14, по Романовскому-Гимзе красятся в бледно розовый цвет. Например, возбудитель сифилиса – бледная спирохета.

12. Каковы принципиальные различия между клетками-прокариот и клетками-эукариот. Является ли одноклеточность признаком прокариот?

Все живые организмы, имеющие клеточное строение, делятся на две группы: прокариоты (безъядерные) и эукариоты (ядерные).

В настоящее время на Земном шаре зарегистрировано более 2,5 миллионов видов животных и ежегодно эта цифра увеличивается на десятки тысяч. Ориентироваться в этом многообразии видов помогает биологи́ческая система́тика . Биологи́ческая система́тика - научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое приложение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов. Основная цель систематики - изучение разнообразия животных организмов и построения естественной системы животных, т.е. системы отражающей естественный ход эволюции.

Завершающим этапом работы систематика, отражающим его представления о некой группе живых организмов, является создание Естественной Системы. Предполагается, что эта система, с одной стороны лежит в основе природных явлений, с другой стороны является лишь этапом на пути научного исследования. В соответствии с принципом познавательной неисчерпаемости природы естественная система недостижима.

«Углублённое изучение уже известных групп, всё более разъясняя их взаимные соотношения, будет требовать других сопоставлений или, точнее сказать, перестановки членов. Нам кажется, что естественная система всегда будет подвергаться постоянным изменениям, так как каждая попытка может быть выполнена только в связи с состоянием научных знаний своего времени.» - К. М. Бэр

Основные цели систематики:

наименование (в том числе и описание) таксонов,

диагностика (определение, то есть нахождение места в системе),

экстраполяция, то есть предсказание признаков объекта, основывающееся на том, что он относится к тому или иному таксону.

Например, если на основании строения зубов мы отнесли животное к отряду грызунов, то можем предполагать, что у него имеется длинная слепая кишка и стопоходящие конечности, даже если нам неизвестны эти части тела.

Систематика всегда предполагает, что:

окружающее нас разнообразие живых организмов имеет определённую внутреннюю структуру,

эта структура организована иерархически, то есть разные таксоны последовательно подчинены друг другу,

эта структура познаваема до конца, а значит, возможно построение полной и всеобъемлющей системы органического мира («естественной системы»).

Эти предположения, лежащие в основе любой таксономической работы, можно назвать аксиомами систематики.

Современные классификации живых организмов построены по иерархическому принципу. Различные уровни иерархии (ранги) имеют собственные названия (от высших к низшим): царство, тип, класс, отряд, семейство, род и, собственно, вид. Виды состоят уже из отдельных особей.

Принято, что любой конкретный организм должен последовательно принадлежать ко всем семи категориям. В сложных системах часто выделяют дополнительные категории, например, используя для этого приставки над- и под- (надкласс, подтип и т. п.). Каждый таксон должен иметь определённый ранг, то есть относиться к какой-либо таксономической категории.

Этот принцип построения системы получил название Линнеевской иерархии, по имени шведского натуралиста Карла Линнея, труды которого были положены в основу традиции современной научной систематики.

Сравнительно новым является понятие надцарства, или биологического домена. Оно было предложено в 1990 Карлом Вёзе и ввело разделение всей биомассы Земли на три домена: 1) эукариоты (домен, объединивший все организмы, клетки которых содержат ядро); 2) бактерии; 3) археи.

Характерная особенность человеческого ума - это его стремление познавать окружающий мир во всем его многообразии, потребность систематизировать, группировать явления по их сходству или различию в соподчиненные категории. Если бы множество фактов не собиралось в классифицированную систему, невозможно было бы ни запомнить их, ни тем более осмыслить. Даже самый изощренный мозг систематика не может запомнить более нескольких тысяч названий. Однако все однородные биологические явления природы обладают в силу большего или меньшего родства большим или меньшим сходством. Градации сходства или различия находят свое выражение в групповых объединениях, также связанных единством происхождения. Так, например, среди шмелей мы различаем много видов: лесной, луговой, садовый, каменный и т. д. Все они различаются видовыми признаками, но все объединяются родовыми- все они шмели и составляют род Bombus и подсемейство шмелиных (Bombinae).

В семействе пчелиных есть другие подсемейства (Bombinae, Andreninae и др.)» объединяемые в группу Mellifera отряда перепончатокрылых (Hymenoptera)- один из 33 отрядов класса насекомых, а этот последний отличается группой признаков, выделяющих его среди типа членистоногих (Arthropoda). Таким образом, любое животное имеет видовое название и относится к определенным роду, семейству, отряду, классу и типу животных, а этот тип в свою очередь вместе с другими типами составляет царство животных, отличное по ряду признаков от царства растений и микробов.

Вероятно, нет ни одной области науки, техники и искусства, в которой не использовалась бы в большей или меньшей степени классификация. В определенном аспекте она отражает все достижения в данной области человеческого знания и в значительной степени выражает высоту достигнутого ею уровня.

Систематика нужна, прежде всего, потому, что она сводит в систему все многообразие живого и дает возможность легко находить в этой системе место для нового факта. Систематика дает наиболее точную характеристику объекта экспериментальных и биологических исследований, без чего само исследование теряет значительную долю, а часто и весь смысл, так как биологические свойства, которыми обладает определенный вид, могут быть не свойственны другому, даже очень близкому виду.

Система дает яркую картину филогенетического развития животного мира, отражая родственные связи между отдельными группами и предоставляя возможность решать одну из наиболее важных в теоретическом и практическом отношении проблем биологии - проблему возникновения новых видов, а также и других систематических категорий . Какой бы биологический вопрос мы ни взяли, нам, прежде всего, необходима точная классификационная характеристика избранных нами объектов и общие представления о происхождении и развитии той группы, к которой они относятся. Систематику справедливо называют математикой биологии. Следует при этом отметить, что отдельным одноименным систематическим группам может быть свойственно различное современное видовое разнообразие. Так, в класс насекомых включают около 1000 000 известных науке видов, в класс брюхоногих моллюсков - около 90 тыс. видов, в большинство классов включают по нескольку тысяч или сот живущих ныне видов, а в классы наутилоидей и мечехвостов- только по 4-5 видов, в класс однокрышечковых моллюсков (Monoplacophora, или Neopilina) - два вида, а к классу кистеперых рыб относят только одну латимерию. Вероятно, все классы с очень малым числом видов - это вымирающие группы, уходящие с арены жизни. Действительно, многие из них в прежние геологические периоды были представлены многими десятками, сотнями, а иногда и тысячами видов. Поэтому особенный интерес вызывает их систематическая обособленность от других ныне живущих групп.

Систематика растений как наука, предмет ее изучения, задачи и значение. Краткая история развития систематики высших растений, исторические периоды ее становления. Принципы научного подхода к разработке классификации растений, типы систем высших растений:искусственные, естественные и филогенетические. Примеры систем различных типов, разработанные учеными разных стран

Систематика высших растений - это раздел ботаники, который разрабатывает естественную классификацию высших растений на основе изучения и выделения таксономических единиц, устанавливает родственные связи между ними в их историческом развитии.

"Систематика, по определению Lawrence (1951) - это наука, которая включает о п р е д е л е н и е, н о м е н к л а т у р у и к л а с с и ф и к а ц и ю объектов, и обычно ограничивается объектами, если она ограничивается растениями, то часто называется систематической ботаникой".

О п р е д е л е н и е - это сопоставление растений или таксона с другими и выявление идентичности или сходства его с уже известными элементами. В некоторых случаях может быть обнаружено, что растение является новым для науки;

Н о м е н к л а т у р а - это выбор правильного научного названия известного всем растения в соответствии с системой номенклатуры; это своеобразная метка, к которой можно обращаться. Процесс наименования регулируется международно принятыми правилами, которые лежат в основе "Международного кодекса ботанической номенклатуры".

К л а с с и ф и к а ц и я - это отнесение растения (или групп растений) к группам, или таксонам, которые принадлежат к различным категориям согласно особому плану или порядку; то есть кждый вид классифицируется как определенного рода, каждый род относить к определенному семейству и т. д. (Гербарное дело: Справочное руководство. Русское издание. Кью: Королевский ботанический сад, 1995).

Важнейшими понятиями систематики являются таксономические (систематические) категории и таксоны. Под таксономическими категориями подразумевают определенные ранги или уровни в иерархической классификации, полученные в результате последовательного подразделения абстрактного множества на подмножества.

Задачи систематики высших растений:

место высших растений в органическом мире, отличие их от водорослей;

краткую историю развития систематики высших растений, методы исследований в систематике высших растений;

вегетативные и репродуктивные органы высших растений отдельных таксонов; происхождение и филогенетические связи между ними; различные взгляды на происхождение высших растений и их таксонов; значение высших растений в природе и жизни человека; вопросы рационального использования и охраны высших растений.

Древнегреческое естествознание отражено в трудах Аристотеля (384-322 гг. до н. э.). Он был крупнейшим натуралистом своего времени. Аристотель интуитивно признавал родство всего живого, и растения он рассматривал как часть природы.

Система Теофраста была первой попыткой экологического подхода к классификации растений. Влияние классификации Теофраста прослеживается почти до нашего времени.

Период с конца XVI до второй половины XVIII столетия характеризуется появлением ряда искусственных морфологических систем, или систем, которые строятся на основе какого-либо одного или нескольких признаков.

Роль реформатора ботаники сыграл великий шведский ученый Карл Линней (1707-1778 гг.). Он был в числе тех ботаников, которые в XVIII ст. оценили учение Камерариуса о поле у растений.

Система Линнея включает 24 класса растений. В 23 классах представлены растения с цветками, которые отличаются между собой количеством тычинок, их взаимным расположением, одинаковой или различной длиной, распределением полов, а также растения, у которых тычинки срослись со столбиком. В 24 класс Линней отнес "бесцветковые" растения, т. е. не имеющих цветков.

Огромная заслуга К. Линнея перед ботаникой в том, что он впервые ввел бинарную номенклатуру растений: вид растения называют двумя словами - родовым и видовым. Например: вид - ива белая - Salix (родовое название), alba (видовой эпитет) L. (Linneus - фамилия автора названия).

Системой К. Линнея заканчивается период искусственных систем в истории систематики растений.

Во второй половине XVIII столетия во взглядах ботаников очерчиваются значительные изменения. Этому способствовало то, что к этому времени в Европе уже знали много видов растений, которые были собраны в коллекциях научных центров. Описывая эти растения, систематики включали их в определенную классификацию. Каждое растение получало свое название. Более подробно изучались генеративные органы - цветки. Начали применять более совершенные оптические приборы. Систематики понимали, что необходимо переходить на более совершенную систему классификации растений.

В основу создания естественной системы классификации положены принципы сходства растений по совокупности признаков.

В естественной системе все растения, начиная с водорослей и грибов и заканчивая высшими цветковыми растениями, располагаются в такой последовательности, что в конце каждого семейства помещались формы, переходные к следующему.

Эволюционная теория Ч. Дарвина совершила настоящий переворот во всех областях естествознания, поэтому систематика не могла оставаться на старых позициях. Из науки статичной, которая изучает организмы в современном состоянии, систематика превратилась в науку динамичную, которая ставит своей целью показать филогенез, или происхождение, современных организмов от более простых и развитие их в историческом аспекте. Этим заканчивается второй период истории систематики - период естественных систем и начинается третий - период филогенетических систем.

В основу построения филогенетических систем растений положены принципы общности исторического развития отдельных таксонов растений (отделов, классов, порядков, семейств, родов и видов). Наиболее распространенными филогенетическими системами растений являются система ботаника А. Л. Тахтаджяна.

Систематика растений – наука об их разнообразии. Ее задача – описание организмов, выявление сходства и различия, классификация и установление идентичных групп, родственных связей и эволюционных отношений.

Конечная цель - создание системы растений, в которой было бы определено постоянное местоположение каждого вида. Для этого необходимы единые методология и критерии.

Современная систематика строится на данных многих биологических наук. Теоретической основой ее является эволюционное учение.

В ботаническую систематику включают флористику, связанную с описанием растений, таксономию – разделение растений на сопряженные, соподчиненные группы (таксоны) и филогенетическую систематику - установление общности происхождения отдельных групп (категорий) растений – филогенез.

Важным разделом систематики является номенклатура – существующее название таксонов и система правил, регулирующих установленные названия.

Систематика позволяет ориентироваться в многообразии организмов, что необходимо для хозяйственной деятельности человека.

2 Методы систематики

Основной метод систематики – сравнительно - морфологический . Он основан на сравнении морфологических признаков растений, но этот метод дополняется и другими.

Сравнительно – анатомический, эмбриологический, онтогенетический – изучают сходство и различие в строении тканей, зародышевых мешков, особенности образования новых клеток, оплодотворения и развития зародыша, формирования органов.

Сравнительно - цитологический и кариологический – анализируют строение клеток, ядра (по числу и морфологии хромосом). Методы позволяют установить гибридную природу растений, изменчивость вида.

Палинологический – исследует строение оболочек спор и пыльцевых зерен растений. Анализ данных палеоботаники и геологии позволяет установить особенности древних флор.

Биохимический – изучает химический состав первичных и вторичных соединений. С биохимией связаны физиологические особенности: морозоустойчивость, засухоустойчивость, солеустойчивость и т.д.

Гибридологический – основан на изучении скрещивания растений разных групп, совместимости и несовместимости родительских пар, что позволяет установить родство.

Палеонтологический – может воссоздать по ископаемым остаткам эволюцию отдельных видов, историю их развития, дать материал для установления родства между крупными систематическими единицами: отделами, классами, порядками.

Выбор методов современной систематики определяется задачами и используется для выявления сходства и различия между таксонами (группами) и установление исторической последовательности их происхождения.

3 Разнообразие организмов

Для удобства изучения принято делить растения на две большие группы: низшие и высшие.

Высшие – более молодая группа. Это многоклеточные организмы, тело которых расчленено на органы (исключение составляют печеночные мхи). Органы полового размножения у них – многоклеточные. В половом органе – архегонии содержится одна половая клетка (яйцеклетка), в антеридии – много сперматозоидов. По количеству видов они превосходят низшие. По способу питания выделяются автотрофные и гетеротрофные растения.

Автотрофные – образуют органические вещества, необходимые для построения своего тела и жизненных процессов из углекислоты, воды и минеральных веществ.

По источникам энергии их делят на фотосинтетики – содержащие хлорофилл и образующие органические вещества при использовании световой энергии, и хемосинтетиков – безхлорофильные организмы, использующие энергию окисления минеральных веществ (сероводород, метан, аммиак, закисное железо и др.) для образования органического вещества.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1.Систематика и эволюци онное древо животных и растений

СИСТЕМАТИКА (от греческого systematikos -- упорядоченный, относящийся к системе), раздел биологии, задачей которого является описание и обозначение всех существующих и вымерших организмов, а также их классификация по таксонам (группировкам) различного ранга. Опираясь на данные всех разделов биологии, особенно на эволюционное учение, систематика служит базой для многих биологических наук. Особое значение систематики заключается в создании возможности ориентирования во множестве существующих видов организмов. Систематика основных групп органического мира -- прокариот и эукариот -- имеют одни и те же основы и задачи и много общего в методах исследования. Вместе с тем различным разделам систематики свойствен ряд особенностей, связанных со спецификой разных групп организмов. Систематику часто разделяют на таксономию, понимая под ней теорию классификации организмов, и собственно систематику, в указанном выше широком смысле. Иногда термин «таксономия» используют как синоним систематики.

Систематика используют для классификации не только отдельные, частные (морфологические, физиологические, биохимические, экологические и другие) признаки, характеризующие организмы, но и всю их совокупность. Чем полнее учитываются различные особенности организмов, тем в большей мере выявляемое систематическое сходство отражает родство (общность происхождения) организмов, объединяемых в тот или иной таксон. Например, несмотря на поверхностное сходство летучей мыши с птицей (как летающих теплокровных позвоночных), летучая мышь -- млекопитающее, т. е. относится к другому классу. Если же сравнивать птиц и млекопитающих с другими, более отдалёнными организмами, например, из других типов, важно уже не различие, а общность плана их строения как позвоночных. Кактусы и молочаи, например, сходны, хотя относятся к разным семействам; однако и те и другие объединяются в класс двудольных растений.

Попытки классификации организмов известны с древности (Аристотель, Теофраст и др.), однако основы систематики как науки заложены в работах Дж. Рея (1686 - 1704) и особенно К. Линнея (1735 и позже). Первые научные системы растений и животных были искусственными, то есть объединяли организмы в группы по сходным внешним признакам и не придавали значения их родственным связям. Учение Ч. Дарвина (1859 и позднее) придало уже сложившейся систематике эволюционное содержание. В дальнейшем главным направлением в её развитии стало эволюционное, стремящееся наиболее точно и полно отразить в естественной (или филогенетической) системе генеалогические отношения, существующие в природе. Кроме эволюционного в современной систематике существуют кладистическое (филогенетическое) и численное (фенетическое) направления. Кладистическая систематика определяет ранг таксонов в зависимости от последовательности обособления отдельных ветвей (кладонов) на филогенетическом древе, не придавая значения диапазону эволюционных изменений в какой-либо группе. Так, млекопитающие у кладистов -- не самостоятельный класс, а таксон, соподчинённый пресмыкающимся. Численная, или нумерическая, систематика прибегает к математической обработке данных по множеству произвольно выделенных признаков организмов, придавая каждому одинаковое значение. Классификация строится на основании степени различий между отдельными организмами, определяемой таким методом.

Эволюция не сводится только к поступательному движению вверх по "лестнице" прогресса. Ведь условия среды обитания чрезвычайно разнообразны, поэтому не обязательно все время стремиться к повышению уровня организации. Можно просто уходить от конкуренции с другими организмами, осваивая еще незанятые "ячейки" в сообществах живых организмов -- экологические ниши. Этот процесс называют "дивергенцией": близкие виды в ходе эволюции как бы "расходятся" в разные стороны, вырабатывая специальные приспособления к определенным условиям среды.

Если пытаться изобразить процесс расхождения видов по разным жизненным зонам и экологическим нишам, то ничего лучше "эволюционного древа" не придумаешь. Растущий вверх "ствол" -- это и есть основное направление эволюционного прогресса млекопитающих, означающее повышение уровня их организации. А расходящиеся вбок ветви и веточки и есть не что иное, как дивергенция видов.

Сначала на стволе появляется крошечный побег: это возник новый вид, пытающий свое счастье в эволюции. Если ему повезет, он не вымрет из-за каких-либо пертурбаций: зачаточный побег не "засохнет", а превратится в небольшую веточку. В новых благоприятных условиях, еще никем не занятых, появляется все больше и больше потомков того предково-го вида: ветка все больше ветвится, становится толще. И в конце концов оказывается, что удачливый вид-основатель "нашел" новое, весьма перспективное направление эволюции: побег превращается в то, что садоводы назвали бы "скелетной ветвью" звериного древа жизни. Так, например, около 10 миллионов лет назад какие-то из зерноядных хомяков перешли на питание травой: это оказалось настолько удачным, что их потомки -- полёвки -- по разнообразию и обилию многократно превзошли своих предков.

Приспосабливаясь к новой среде обитания, потомки все больше теряют сходство со своими предками: они как бы "забывают" своих пращуров, живших в иных условиях. Утрачивается сходство и с "кузенами", причем чем дальше виды "разошлись" в ходе эволюции по разным природным зонам, тем меньше между ними сходства. Ну кто бы мог сказать, глядя на порхающих в воздухе маленьких летучих мышей и плавающих в морских водах гигантов-китов, что все они -- отдаленные потомки одних и тех же наземных зверьков, более всего похожих на ныне живущих землероек?

"Эволюционное древо" прекрасно иллюстрирует не только ход исторического развития живых существ, но и устройство "Системы природы". Оно чем-то напоминает устройство воинских частей: подобно полкам, ротам, взводам, в "Системе природы" есть разные уровни или ранги -- классы, отряды, семейства и так далее. На "эволюционном древе" они соответствуют разным по "толщине" ветвям и отражают разную степень обособленности тех или иных групп животных. Говоря о животных, имеющих в системе определенный ранг, -- о китообразных или тюленях, ежах или землеройках, мы можем охарактеризовать то, насколько давно отделилась и насколько далеко отошла данная ветвь от основного эволюционного ствола.

Так, если все звериное "древо" -- это класс млекопитающих, то "скелетные ветви" -- это отдельные отряды: например, отряд хищные, отряд парнокопытные. Они обособились, как правило, не менее 70-90 миллионов лет назад, каждый завоевал свою собственную адаптивную зону. Растущие на них более мелкие ветки -- это семейства: например, в отряде хищных есть семейства медвежьих и кошачьих; в отряде парнокопытных -- семейства полорогих и оленьих. Их эволюционный возраст -- обычно 30-40 миллионов лет, каждое из семейств особым образом осваивает общую для отряда адаптивную зону. Например, в рацион медведей входят не только животные, но и растительные корма, а кошки питаются почти исключительно мясом.

Концевые веточки нашего "древа" -- это отдельные роды: род медведей, род оленей и так далее. А они уже заканчиваются видами: бурый и белый медведи, лесной и степной коты, благородный и пятнистый олени. Возраст родов и видов млекопитающих обычно измеряется несколькими миллионами лет.

2.Отличия живого от неживого

Наверняка, каждый из вас знает, что -- живое, а что -- нет. Например, собака, кошка, ворона, елка, тюльпан -- живые, а стол, стул, камень, вода -- неживые.

Но это все -- хорошо знакомые вам объекты. А если вы встретитесь с чем-то совершенно вам неизвестным, как определить, живое оно или нет? Придется сформулировать какие-то при­знаки, отличающие живое от неживого.

Договоримся сразу: каждый из этих признаков будет необходимым, но не достаточным. Это означает, что живые организмы должны обладать всеми этими признаками. Но в то же время каждый из этих признаков может подойти и к каким-то представителям мира неживого.

1. Все живые организмы устроены значительно сложнее неживых природных систем. Например, вода состоит из одного единственного сорта простеньких молекул. Горная порода содержит в себе молекулы разных сортов и немного более сложного устройства. Но даже самое простое живое существо составлено из набора исключительно сложных молекул, к тому же соединенных друг с другом в строго определенной последовательности.

2. Все живое питается, то есть так или иначе получает энергию из окружающей среды. Если камень полностью отрезать от окружающего мира, он останется таким же, как был. Если же мы отрежем от внешнего мира одинокое живое существо -- оно быстро погибнет. Живым организмам нужны: воздух для дыхания, различные вещества, для того чтобы строить из них собственное тело, и энергия (например, солнечный свет) для всех жизненных про­цессов.

3. Все живое активно реагирует на окружающий мир. Если вы толкнете камень, он останется на месте или покатится в ту сторону, куда его толкнули. Но попробуйте толкнуть змею! В лучшем случае она уползет, причем не обязательно в ту сторону, куда ее толкнули, а туда, куда сочтет нужным. В худшем для вас случае она бросится в атаку на обидчика, используя свои ядовитые зубы. Так же активно ведет себя все живое. Деревья сбрасывают листву при наступлении холодов, подсолнух поворачивает «голову» вслед за солнцем, корни тянутся к воде. Что уж говорить о животных, которые могут бегать за добычей или прятаться от опасности!

4. Все живое развивается. Причем не просто растет (расти может и сугроб), а изменяется. Семечко, попавшее в почву, сбрасывает оболочку, выпускает корни. Появляются ствол, ветви, листья, то есть совершенно новые структуры и органы. Вы можете сказать, что человек от младенческого до взрослого состояния только увеличивается в размерах, как сугроб. У него не вырастают новые конечности, не отваливается хвост -- ну, решительно ничего нового! Но тем не менее и человек в течение своей жизни изменяется довольно сильно. Обследовав пациента, врачи могут определить его возраст с неплохой точностью, потому что каждому возрасту соответствует определенное состояние организма. Кроме того, человек обучается. Если новорожденный практически ничего не умеет и всецело зависит от заботы родителей, то взрослый может жить самостоятельно и даже активно влиять на окружающий мир. Значит, человек изменился, произошло развитие живого организма.

5. Все живое размножается. Любой живой организм стремится оставить на Земле потомство. Если бы этого не происходило, жизнь на Земле давно бы исчезла. Ведь все живое рано или поздно умирает. Значит для того, чтобы жизнь на планете продолжалась, на смену погибшим живым существам должны приходить новые. Жизнь не может возникнуть из ничего. Ее может породить только другая жизнь. Поэтому все живое должно оставлять потомство, чтобы сохраниться в веках.

6. Информация о том, каким быть будущему организму, определенным образом «записана» в нем самом и передается по наследству. Из желудя может вырасти только дуб и никогда -- береза или лилия. Впрочем, иногда при пере­даче информации из поколения в поколение происходит сбой. В информацию закрадывается ошибка. Тогда в новом организме возникают изменения, о которых мы будем говорить в следующем параграфе.

7. Все живое приспосабливается к окружающей среде. Это называется адаптацией. Камень останется камнем, где бы он ни оказался: на дне морском, в пустыне или в космосе. С ним, конечно, произойдут какие-то изменения, но не такие, которые облегчили бы ему существование. А живым существам приходится бороться за свою жизнь и для этого приспосабливаться к различным условиям. Так, например, обитатели холодных стран обзавелись теплой шерстью, спасающей их от холода. А пустынное растение саксаул -- десятиметровыми корнями, дотягивающимися до воды. Птица страус оказалась слишком тяжелой для полетов, но зато у нее развились сильные ноги, позволяющие ей бегать быстрее, чем иные птицы летают. А у человека развился головной мозг, который помогает ему найти выход из самых сложных ситуаций и тем самым хорошо приспособиться к окружающей среде.

Теперь попробуем применить перечисленные выше признаки. Определим, например, живым или неживым является коралловый риф -- основа многих океанских островов. Понаблюдав за рифом внимательно, мы убедимся, что он покрыт небольшими выростами -- полипами, которые и питаются, и размножаются, и реагируют, и развиваются. Значит, они живые. Погибая, коралловые полипы оставляют на рифе свои скелеты, на которых сверху устраиваются новые, живые, кораллы. Так, риф постепенно увеличивается, превращается в прочную неживую скалу -- земную твердь, остров в океане. Вывод: сам риф -- не живой, но его достраивают колонии живых существ.

А вот споры о том, считать ли живыми всем известные вирусы (мельчайшие образования, вызывающие у нас грипп, желтуху и т. п.), не затихают и по сей день. Вирус очень похож на живое существо, но устроен проще, чем любой организм. Единственное, что он может делать, это размножаться. Причем не сам, а превращая клетки других живых организмов в «фабрики» по производству вирусов. Получается, как в фантастическом романе: роботы захватили власть и заставляют людей производить все новых и новых роботов. Но роботы, даже управляя людьми, остаются неживыми. Поэтому многие биологи не считают живым и вирус. Бороться с вирусными заболеваниями очень трудно. Микроб, вызывающий, скажем, скарлатину,-- живой. Убив микробов тем или иным лекарством, мы можем избавиться от болезни. А как убить то, что неживое? Остается только укреплять заболевший организм в надежде, что он справится с вирусами сам.

3.Эволюция живого

Рост, в самом широком смысле, - это любые количественные изменения, происходящие в организме. Они касаются возрастания массы и объема индивида или его органов (частей), увеличения числа и размеров клеток в результате преобладания процессов анаболизма над процессами катаболизма. У растений и грибов рост нередко продолжается всю жизнь, хотя обычно его интенсивность снижается с возрастом. У животных рост ограничен во времени.

Развитие - необратимый процесс качественных изменений организма. Оно проявляется в дифференцировке тканей и органов, созревании, старении и т.п.

Индивидуальное развитие отдельного организма от зарождения до смерти получило название онтогенеза. Отдельные онтогенезы в цепи поколений складываются в единый последовательный процесс, называемый гологенезом. Совокупность онтогенезов, т. е. гологенез, лежит в основе эволюции. Под эволюцией подразумевается процесс необратимого исторического развития живой природы и отдельных его звеньев, ведущий к усложнению или упрощению организации живого. В эволюционном процессе принято различать микроэволюцию и макроэволюцию.

Под микроэволюцией подразумевают процессы, сопровождающиеся изменением генетического состава популяции и выражающиеся в формировании адаптаций при образовании экотипов, рас, разновидностей и подвидов.

Макроэволюция - это образование таксонов видового и более высокого ранга - родов, семейств, порядков и т.д. Ход макроэволюции определяется микроэволюционными процессами. Макроэволюция реализуется в филогенезе, т.е. в процессе исторического становления и развития отдельных видов и других систематических групп более высокого ранга. Как и вся эволюция, филогенез связан с онтогенезом и гологенезом. Этот процесс принято изображать графически в виде филогенетического древа (или филемы), показывающего возможные родственные связи между отдельными ветвями живого (филогенетическими стволами, или филами).

4.Эволюция человека

Этапы эволюции человека

Ученые утверждают, что современный человек произошел не от современных человекообразных обезьян, для которых характерна узкая специализация (приспособление к строго определенному образу жизни в тропических лесах), а от вымерших несколько миллионов лет тому назад высокоорганизованных животных -- дриопитеков. Процесс эволюции человека очень длительный, основные его этапы представлены в схеме.

Основные этапы антропогенеза (эволюция предков человека)

Основные этапы антропогенеза. По данным палеонтологических находок (ископаемых остатков), около 30 млн. лет назад на Земле появились древние приматы парапитеки, жившие на открытых пространствах и на деревьях. Их челюсти и зубы были подобны челюстям и зубам человекообразных обезьян. Парапитеки дали начало современным гиббонам и орангутангам, а также вымершей ветви дриопитеков. Последние в своем развитии разделились на три линии: одна из них привела к современной горилле, другая -- к шимпанзе, а третья -- к австралопитеку, а от него -- к человеку. Родство дриопитека с человеком установлено на основе изучения строения его челюсти и зубов, обнаруженных в 1856 г. во Франции.

Важнейшим этапом на пути превращения обезьяноподобных животных в древнейших людей было появление прямохождения. В связи с изменением климата и изреживанием лесов наступил переход от древесного к наземному образу жизни; чтобы лучше обозревать местность, где у предков человека было много врагов, им приходилось вставать на задние конечности. В дальнейшем естественный отбор развил и закрепил прямохождение, и, как следствие этого, руки освободились от функций опоры и передвижения. Так возникли австралопитеки -- род, к которому относятся гоминиды (семейство людей).

Австралопитеки

Австралопитеки -- высокоразвитые двуногие приматы, использовавшие предметы естественного происхождения в качестве орудий (следовательно, австралопитеков еще нельзя считать людьми). Костные остатки австралопитеков впервые обнаружены в 1924 г. в Южной Африке. Они были ростом с шимпанзе и массой около 50 кг, объем мозга достигал 500 см3 -- по этому признаку австралопитек стоит ближе к человеку, чем любая из ископаемых и современных обезьян.

Строение тазовых костей и положение головы было сходно с таковыми человека, что свидетельствует о выпрямленном положении тела. Они жили около 9 млн. лет тому назад в открытых степях и питались растительной и животной пищей. Орудиями их труда были камни, кости, палки, челюсти без следов искусственной обработки.

Человек умелый

Не обладая узкой специализацией общего строения, австралопитеки дали начало более прогрессивной форме, получившей название Homo habilis -- человек умелый. Костные остатки его были обнаружены в 1959 г. в Танзании. Возраст их определен примерно в 2 млн. лет. Рост этого существа достигал 150 см. объем головного мозга был на 100 см3 больше, чем у австралопитеков, зубы человеческого типа, фаланги пальцев как у человека, сплющены.

Хотя в нем сочетались признаки, как обезьян, так и человека, переход этого существа к изготовлению галечных орудий (хорошо выделанных каменных) свидетельствует о появлении у него трудовой деятельности. Они могли ловить животных, бросать камни и совершать другие действия. Кучи костей, находящиеся вместе с ископаемыми остатками человека умелого, свидетельству ют о том, что мясо стало постоянной частью их диеты. Эти гоминиды пользовались грубыми каменными орудиями труда.

Человек прямоходящий

Homo erectus -- человек прямоходящий. Вид, от которого, как полагают, произошел современный человек. Его возраст 1,5 млн. лет. Его челюсти, зубы и надбровные дуги все еще оставались массивными, но объем головного мозга у некоторых индивидуумов был таким же, как у современного человека.

Некоторые кости Homo erectus найдены в пещерах, что позволяет предполагать о его постоянном жилище. Кроме костей животных и довольно хорошо выделанных каменных орудий, в некоторых пещерах обнаружены кучи древесного угля и обгоревшие кости, так что, по-видимому, в это время австралопитеки уже научились добывать огонь.

Эта стадия эволюции гоминид совпадает с заселением выходцами из Африки других более холодных областей. Выдержать холодные зимы, не выработав сложных видов поведения или технических навыков, было бы невозможно. Ученые предполагают, что дочеловеческий мозг Homo erectus был способен находить социальные и технические решения (огонь, одежда, запас нищи и совместное проживание в пещерах) проблем, связанных с необходимостью выжить в зимнюю стужу.

Таким образом, все ископаемые гоминиды, особенно австралопитеки, рассматриваются как предшественники человека.

Эволюция физических особенностей первых людей, включая современного человека, охватывает три этапа: древнейшие люди, или архантропы; древние люди, или палеоантропы; современные люди, или неоантропы.

Архантропы

Первый представитель архантропов -- питекантроп (японский человек) -- обезьяночеловек, прямоходящий. Его кости обнаружены на о. Ява (Индонезия) в 1891 г. Первоначально его возраст определяли равным 1 млн. лет, но, согласно более точной современной оценке, ему немногим больше 400 тыс. лет. Рост питекантропа составлял около 170 см, объем черепной коробки -- 900 см3.

Несколько позже существовал синантроп (китайский человек). Многочисленные его остатки найдены в периоде 1927 по 1963 гг. в пещере близ Пекина. Это существо использовало огонь и изготовляло каменные орудия. К этой группе древнейших людей относят еще и гейдельбергского человека. систематика биология раса эволюция

Палеоантропы

Палеоантропы -- неандертальцы появились на смену архантропам. 250-100 тыс. лет тому назад они были широко расселены на территории Европы. Африки. Передней и Южной Азии. Неандертальцы изготовляли разнообразные каменные орудия: ручные рубила, скребла, остроконечники; пользовались огнем, грубой одеждой. Объем их мозга выросло 1400 см3.

Особенности строения нижней челюсти показывают, что у них была зачаточная речь. Они жили группами по 50-100 особей и во время наступления ледников использовали пещеры, выгоняя из них диких зверей.

Неоантропы и человек разумный

Неандертальцев сменили люди современного типа -- кроманьонцы -- или неоантропы. Они появились около 50 тыс. лет тому назад (костные остатки их найдены в 1868 г. во Франции). Кроманьонцы образуют единственный род н вид Homo Sapiens - человек разумный. У них полностью сгладились обезьяньи черты, на нижней челюсти имелся характерный подбородочный выступ, указывающий на их способность к членораздельной речи, а по искусству изготовления разнообразных орудий из камня, кости и рога кроманьонцы ушли далеко вперед по сравнению с неандертальцами.

Они приручили животных и начали осваивать земледелие, что позволило избавиться от голода и добывать разнообразную пищу. В отличие от предшественников эволюция кроманьонцев проходила под большим влиянием социальных факторов (сплочение коллектива, взаимная поддержка, совершенствование трудовой деятельности, более высокий уровень мышления).

Возникновение кроманьонцев -- завершающий этап формирования человека современного типа. На смену первобытному человеческому стаду пришел первый родовой строй, завершивший становление человеческого общества, дальнейший прогресс которого стал определяться социально-экономическими законами.

Человеческие ра сы

Ныне живущее человечество распадается на ряд групп, называемых расами.

Человеческие расы -- это исторически сложившиеся территориальные общности людей, обладающие единством происхождения и сходством морфологических признаков, а также наследственными физическими признаками: строением лица, пропорциями тела, цветом кожи, формой и цветом волос.

По этим признакам современное человечество делится на три основные расы: европеоидную, негроидную и монголоидную. Каждая из них имеет свои морфологические особенности, но все это внешние, второстепенные признаки.

Особенности, составляющие человеческую сущность, такие, как сознание, трудовая деятельность, речь, способность познавать и подчинять природу, едины у всех рас, что опровергает утверждения идеологов-расистов о «высших» нациях и расах.

Дети негров, воспитанные вместе с европейцами, не уступали им по уму и одаренности. Известно, что центры цивилизации 3-2 тыс. лет до нашей эры были в Азии и Африке, а Европа в это время пребывала в состоянии варварства. Следовательно, уровень культуры зависит не от биологических особенностей, а от общественно-экономических условий, в которых живут народы.

Таким образом, утверждения реакционных ученых о превосходстве одних рас и неполноценности других беспочвенны и лженаучны. Они созданы для оправдания захватнических войн, грабежа колоний н расовой дискриминации.

Расы человека нельзя смешивать с такими социальными объединениями, как народность и нация, которые образовались не по биологическому принципу, а на основе устойчивости обшей речи, территории, экономической и культурной жизни, образовавшихся исторически.

Человек в истории своего развития вышел из подчинения биологическим законам естественного отбора, его приспособление к жизни в разных условиях происходит путем активной их переделки. Однако эти условия в какой-то мере все же оказывают определенное влияние на организм человека.

Результаты такого влияния видны на ряде примеров: в особенностях пищеварительных процессов у оленеводов Заполярья, потребляющих много мяса, у жителей Юго-Восточной Азии, пищевой рацион которых состоит в основном из риса; в увеличенном количестве эритроцитов в крови горцев по сравнению с кровью обитателей равнин; в пигментации кожи жителей тропиков, отличающих их от белизны покровов северян и т. д.

После завершения формирования современного человека действие естественного отбора не прекратилось полностью. В результате этого в ряде регионов земного шара у человека выработалась устойчивость к некоторым заболеваниям. Так, у европейцев корь протекает намного легче, чем у народов Полинезии, которые столкнулись с этой инфекцией только после колонизации их островов переселенцами из Европы.

В Центральной Азии у человека редко встречается группа крови 0, но выше частотность группы В. Выяснилось, что это связано с эпидемией чумы, имевшей место в прошлом. Все эти факты доказывают, что в человеческом обществе существует биологический отбор, на основе чего сформировались человеческие расы, народности, нации. Но все возрастающая независимость человека от окружающей среды почти приостановила биологическую эволюцию.

Размещено на Allbest.ru

...

Подобные документы

    Разработка интегрированного урока по биологии и химии, задачей которого является формирование понятия "витамины", знакомство учащихся с их классификацией, биологической ролью витаминов в обмене веществ и их практическим значением для здоровья человека.

    презентация , добавлен 23.04.2010

    Условия, причины и предпосылки разделения людей в мире на группы, условия объединения и самоидентификации. Основные стадии эволюции человека. Cущность расизма и его социальные корни. Современный аспект проблемы различий между человеческими расами.

    презентация , добавлен 02.02.2012

    Основные условия повышения эффективности процесса обучения. Особенности методики преподавания школьной программы по биологии с ориентацией на развитие систематических категорий (вид, род, семейство, класс, отдел, царство) начиная с раздела "Растения".

    курсовая работа , добавлен 18.02.2011

    Химический состав бактериальной клетки. Особенности питания бактерий. Механизмы транспорта веществ в бактериальную клетку. Типы биологического окисления у микроорганизмов. Репродукция и культивирование вирусов. Принципы систематики микроорганизмов.

    презентация , добавлен 11.11.2013

    Эволюция ботаники ХІХ века: развитие морфологии, физиологии, эмбриологии, систематики растений. Теории распространения растений по земному шару. Становление таких наук как - геоботаника, фитоценология, палеоботаника. Перспективы развития биологии в ХХІ в.

    контрольная работа , добавлен 10.01.2011

    Систематика - это наука, изучающая многообразие организмов на Земле, их классификацию и эволюционные взаимоотношения. Значение работ Карла Линнея. Основные особенности морфологической, "искусственной" и филогенетической (эволюционной) систематики.

    реферат , добавлен 27.10.2009

    Цитология как раздел биологии, наука о клетках, структурных единицах всех живых организмов, предмет и методы ее изучения, история становления и развития. Этапы исследований клетки как элементарной единицы живого организма. Роль клетки в эволюции живого.

    контрольная работа , добавлен 13.08.2010

    Особенности систематики и биологии трематод рода Diplostomum. Главные проблемы идентификации и таксономии диплостом. Геномная вариабельность рДНК трематод. Анализ филогенетических связей в группе диплостомид на основании последовательностей ITS и cox1.

    дипломная работа , добавлен 31.01.2018

    Совокупность всех живых организмов Земли. Восстановительный, слабоокислительный и окислительный этапы в эволюции биосферы. Выход жизни на сушу, вымирание динозавров, появление гоминид. Появление человека, овладение огнем и появление цивилизации.

    реферат , добавлен 01.02.2013

    Определение понятия "естественный отбор". Социальная часть в естественном отборе. Труд - основной социальный фактор, повлиявший на эволюцию человека. Развитие членораздельной речи и абстрактного мышления. Предпосылки появления различных рас людей.