Синие пигменты красных водорослей называются. Отряд Зеленые водоросли: краткая характеристика. Суп из морских водорослей

Своеобразие внутриклеточного строения красных водорослей складывается как из особенностей обычных клеточных компонентов, так и из наличия специфических внутриклеточных включений.


Клеточные оболочки. В клеточных оболочках красных водорослей хорошо различаются два слоя: внутренний, состоящий из целлюлозы, и наружный, построенный пектиновыми соединениями. У форм с грубым жестким слоевищем снаружи клеточных стенок развивается тонкий слой кутикулы. По составу и строению кутикула багрянок отличается от кутикулы высших растений. Так, например, у порфиры она образуется в результате сгущения молекул моносахарида маннозы. У мягких слизистых форм кутикула отсутствует.


Пектиновые вещества красных водорослей представляют собой соли кальция и магния особых пектиновых кислот. Они обладают способностью растворяться в кипящей воде с образованием слизистых растворов. К группе пектиновых веществ относятся также особые коллоидные вещества, которые содержатся в клеточных оболочках и межклетниках многих багрянок. Они представляют собой сложную смесь содержащих серу полисахаридов и носят общее название фикоколлоидов. Фикоколлоиды не растворяются в холодной воде, но хорошо растворяются в кипящей с образованием коллоидных систем. В настоящее время фикоколлоиды красных водорослей, так же как и бурых, являются самыми важными продуктами, получаемыми из морских водорослей. Поскольку эти вещества широко применяются в хозяйственной жизни человека, их химический состав достаточно хорошо изучен. Фикоколлоиды получены из многих видов, в результате установлено несколько их разновидностей. Более всего известны агар, каррагинин, нори, агароиды. Эти вещества отличаются друг от друга по составу и свойствам, но обладают общей желирующей способностью.


Присутствие коллоидных веществ обусловливает способность клеточных оболочек к сильному набуханию после отмирания, благодаря чему они с трудом поддаются окраске при исследовании.


Среди красных водорослей встречаются формы, оболочки которых обызвествлены. Сначала известь откладывается в срединной пластинке, между внешним и внутренним слоем оболочки, проникая постепенно в целлюлозный слой и более или менее сильно пропитывая его. Но даже при сильном обызвествлении внутри всегда остается тонкая мембрана, лишенная извести и отделяющая плазму от известкового слоя.


Состав известковых соединений неодинаков. У кораллиновых откладывается кальцит, у некоторых немалиевых - арагонит. Кроме того, встречаются карбонаты кальция и магния, а также железо.


Рост оболочек происходит следующим образом. Новые слои ее закладываются на вершине протопласта апикальной клетки, в то время как наружные слои по мере роста клетки постепенно разрываются. В результате вся оболочка имеет слоистое строение и, так как новые слои откладываются под определенным углом, по виду напоминает воронку.


Цитоплазма красных водорослей характеризуется большой вязкостью и плотно прилегает к клеточным стенкам. Она очень легко подвергается плазмолизу, и поэтому красные водоросли весьма чувствительны к изменению условий внешней среды, в частности к опреснению.


Ядро. Среди красных водорослей имеется большое число форм с одноядерными клетками. Как правило, это наиболее просто организованные формы. У высокоорганизованных багрянок клетки обычно многоядерные, за исключением молодых клеток слоевища - апикальных, коровых и т. п. Одноядерные клетки ветвей ограниченного роста при определенных состояниях становятся многоядерными. Однако можно найти и такие водоросли, у которых старые клетки центральных нитей одноядерные, а окружающие их более молодые клетки, наоборот, содержат несколько ядер. Репродуктивные клетки - спермации, карпоспоры, тетраспоры - всегда с одним ядром, но яйцеклетки часто окружены многоядерными клетками, даже у форм, все слоевище которых состоит из одноядерных клеток. Ядро у красных водорослей мелкое, имеет четкую ядерную оболочку и ядрышко.


Хлоропласты. В клетках красных водорослей на ходится один или несколько хлоропластов. У растений класса бангиевых и у примитивных представителей наиболее низкоорганизованного порядка немалиевых имеется единственный звездчатый хлоропласт с одним пиреноидом. Он обычно занимает осевое положение в клетке и тогда состоит из центрального тела и отходящих от него во всех направлениях отростков (рис. 149, 2). Пиреноид при осевом хлоропласте находится в его центре. Отростки, возникающие из центрального хлоропласта, могут расширяться на периферии и смыкаться между собой, образуя пристенный хлоропласт неправильной или лентовидной формы. Вероятно, пристенный хлоропласт большинства багрянок происходит от осевого в результате утраты центральной части.



Роль пиреноида у красных водорослей не очень ясна. В одних случаях его присутствие связано с отложением крахмальных зерен; в других же пиреноид встречается в клетках, не участвующих в процессах ассимиляции. У более высокоорганизованных форм пиреноид исчег зает; этот процесс можно проследить уже в порядке немалиевых.



У красных водорослей, лишенных пиреноидов, хлоропласты бывают двух основных типов - лентовидные и линзовидные (или дисковидные) с многочисленными переходами между ними (рис. 154). Виды, стоящие на более низкой ступени эволюции, обладают обычно лентовидным хлоропластом; для высокоорганизованных форм, наоборот, более характерны линзовидные хлоропласты. То же самое можно сказать и о количестве хлоропластов - число их с усложнением организации увеличивается. Форма хлоропласта не есть нечто постоянное, она может меняться с возрастом, с условиями освещения, с изменением размеров клеток, хотя нередко крупные группы багрянок характеризуются хлоропластом определенной формы. У церамиума в крупных клетках междоузлий хлоропласты вытянутые, лентовидные, а в коротких коровых клетках на узлах - это короткие, неправильно лопастные пластинки. Размножение хлоропластов происходит путем простого перешнуровывания, как у высших растений.


По своему тонкому строению, видимому только под электронным микроскопом, хлоропласты красных водорослей почти не отличаются от хлоропластов других водорослей.


Пигменты. Багрянки отличаются сложным набором пигментов. Кроме обычных для зеленых растений, растворимых в спирту хлорофилла, каротина и ксантофилла, хлоропласты красных водорослей содержат дополнительные водно-растворимые пигменты билипротеины. Это фикоэритрин и фикоцианин. Зеленые растения, как водоросли, так и наземные, содержат две модификации хлорофилла - сине-зеленый хлорофилл а и желто-зеленый хлорофилл b. У красных водорослей найден только хлорофилл а - универсальный пигмент, характерный для всех растений. Кроме того, у некоторых багрянок обнаружен хлорофилл d, природа которого, однако, остается до сих пор не выясненной. Зеленых пигментов у багрянок по сравнению с высшими растениями содержится немного, и обычно их маскируют дополнительные билипротеины. Замечена некоторая закономерность в изменении количества хлорофилла в зависимости от количества света. Водоросли, приспособившиеся к жизни при малой освещенности в полярных морях, обычно богаче хлорофиллом, чем водоросли южных морей. Точно так же глубоководные водоросли богаче хлорофиллом, чем растущие у поверхности воды.


Каротиноиды красных водорослей представлены α- и β-каротином и ксантофиллами лютеином, зеаксантином и, вероятно, тараксантином. Билипротеинами багрянок являются красный фикоэритрин и голубой фикоцианин. Они близки к пигментам сине-зеленых водорослей, но не идентичны им, так как отличаются по химическому составу. Как показано на многочисленных опытах, количество пигментов у багрянок возрастает с глубиной; при этом количество фикоэритрина возрастает в большей мере, чем количество хлорофилла. Каждый, кто собирал эти водоросли в природе, знает, что окрашенные в красный цвет багрянки растут на глубине и что на мелководье они меняют окраску. С увеличением количества света они становятся бледно-красными, затем желто-зелеными, соломенными и наконец полностью обесцвечиваются.


Существует теория так называемой хроматической адаптации, по которой проникновение водорослей на те или иные глубины связано с качеством света, проходящего через толщу воды. Как известно, глубже всего проникают лучи из зеленой и синей частей спектра. Красные пигменты багрянок позволяют им фотосинтезировать в синих лучах, и поэтому, согласно этой теории, они проникают на глубины, недоступные для других водорослей. Однако на практике эта закономерность наблюдается далеко не всегда. Какова же роль билипротеинов в фотосинтезе красных водорослей? В опытах было установлено, что при слабом освещении они участвуют в усиленном поглощении света. Поэтому их можно считать оптическими сенсибилизаторами. Таким образом, проникновение красных водорослей на значительные глубины правильнее объяснить их способностью усваивать малые количества света. В целом багрянки - теневыносливые организмы: слабый свет они способны использовать лучше, чем другие водоросли. Если красная окраска водорослей при слабом свете получает преимущества, то при более сильном, наоборот, интенсивность фотосинтеза багрянок ниже, чем у других водорослей, как раз благодаря наличию красных пигментов. Для защиты от сильного света у багрянок, живущих на небольших глубинах, особенно в тропических и субтропических морях, служат особые иридирующие тельца. Эти мутно-желтые неправильной формы тельца образуются в вакуолях поверхностных клеток слоевища и состоят из мелких зернышек протеиновой природы. Они обладают способностью рассеивать и отражать падающие на них солнечные лучи. При очень сильном освещении иридирующие тельца располагаются под внешней стенкой клетки, в то время как хлоропласт - на внутренней или боковой, и служат своеобразным занавесом для хлоропласта. При попадании растения в условия рассеянного света происходит взаимное перемещение и хлоропласт оказывается у внешней стенки.


Водоросли, обладающие иридирующими тельцами, имеют обычно в падающем свете голубовато-стальной блеск. У некоторых видов в клетках возникают крупные линзообразные тела, которые с понижением освещенности исчезают.


Запасные вещества. В качестве продукта ассимиляции у красных водорослей откладывается полисахарид, называемый багрянковым крахмалом. По химической природе он ближе всего к амилопектину и гликогену и, по-видимому, занимает промежуточное положение между обычным крахмалом и гликогеном. Откладывается багрянковый крахмал в виде мелких полутвердых телец различной формы и окраски. Эти тельца могут иметь форму конусов или плоских овальных пластинок с углублением на широкой поверхности. Часто на них можно видеть концентрические зоны. Зерна багрянкового крахмала образуются частично в цитоплазме, частично на поверхности хлоропластов, но они никогда не образуются внутри пластид, в отличие от обычного крахмала зеленых растений. У форм, имеющих пиреноид, последний в какой-то мере участвует в синтезе крахмала.


Кроме багрянкового крахмала, в качестве запасных веществ у красных водорослей откладываются сахара трегалоза, флоридозид, сахароза и др. У некоторых форм в изобилии встречаются многоатомные спирты. Из жиров известны холестерол, силостерол, фукостерол. Содержание жиров меняется в зависимости от условий среды.



Железистые клетки. Особенностью красных водорослей является наличие у некоторых представителей класса флоридеевых особых клеток с бесцветным содержимым, сильно преломляющим свет (рис. 155). В литературе они известны как пузырчатые, или железистые, клетки. Содержимое этих клеток у разных водорослей имеет разную природу; они заполнены иодистыми, реже бромистыми, соединениями. Чаще всего железистые клетки встречаются в порядке церамиевых. У нитчатой разветвленной водоросли антитамнион они сидят на верхней стороне боковых ветвей (рис. 155, 2). При их развитии сначала отчленяется маленькая линзообразная клетка, содержащая небольшое количество плазмы и мелкие красные хлоропласты. Ядро можно проследить лишь на самой ранней стадии развития. Вскоре на дне этой клетки образуется бесцветный светопреломляющий пузырь. Оп растет, и вместе с ним увеличивается в размерах вся клетка. В сформировавшейся клетке большая часть занята пузырем, и только в верхней части остается узкий слой плазмы с мелкими хлоропластами (рис. 155, 2-5). Роль пузырчатых клеток не выяснена, хотя на этот счет имеется множество самых различных предположений. Их считают недоразвитыми спорангиями, хранилищем запасных веществ, «плавательными пузырями» и т. п.


Железистые клетки характерны для определенных групп водорослей и поэтому служат важным таксономическим признаком.



Волоски. Образование волосков - широко распространенное явление в классе флоридеевых. Настоящие волоски багрянок следует отличать от волосовидных ветвей или ложных волосков. У видов с однорядным нитчатым слоевищем можно видеть, как конечные клетки боковых веточек удлиняются и обесцвечиваются, приобретая волосовидное строение (рис. 151, 7). Это и есть ложные волоски. Настоящие волоски красных водорослей делятся на два типа: одноклеточные и многоклеточные. Одноклеточные волоски никогда не ветвятся. У однорядных нитчатых форм они образуются из верхушечных клеток ветвей, у многорядных - из поверхностных клеток коры. Клетка будущего волоска отделяется от материнской клетки поперечной перегородкой и сильно вытягивается, достигая в длину нередко миллиметра и более (рис. 156). Она содерншт ядро и небольшое количество цитоплазмы. Хлоропласт по мере роста волоска исчезает, и волоски становятся бесцветными. Обычно материнская клетка волоска ничем не отличается от соседних вегетативных клеток, но иногда она намного крупнее и остается хорошо заметной после отпадения волоска. У кораллиновых волоски не являются самостоятельными клетками, а представляют собой только выросты специальных клеток, от которых опи не отделяются перегородкой. Эти клетки намного крупнее остальных и известны под названием трихоцитов или гетероцист (рис. 172, 2, 3). Если в классе флоридеевых одноклеточные волоски встречаются довольно часто, то у бангиевых они отсутствуют полностью.


,


Многоклеточные волоски обычно более или менее сильно разветвлены. Они встречаются только у некоторых водорослей из порядка церамиевых. Как было показано в опытах, основная роль волосков заключается в том, что они способствуют поглощению питательных веществ из окружающей среды.


Поры. Одна из наиболее интересных особенностей красных водорослей состоит в том, что клетки, слагающие слоевище, соединяются между собой с помощью специальных образований, называемых норами. Между дочерними клетками, т. е. клетками, происходящими от одной материнской, соединение осуществляется посредством первичных пор (рис. 157, 2-3). Они формируются в результате неполной перегородки между двумя вновь образующимися клетками. Первичные поры расположены в середине перегородки, в точке, через которую можно провести линию, соединяющую ядра дочерних клеток, и представляют собой тонкую пластинку. Через эту пластинку проходят тяжи, которые соединяют цитоплазму соседних клеток. До самого последнего времени считалось, что первичные поры свойственны только флоридеевым и отсутствуют в классе бангиевых - это был один из принципиальных признаков, на основании которого различали оба эти класса. Но недавно первичные поры были открыты и у представителей класса бангиевых.



Жизнь растений: в 6-ти томах. - М.: Просвещение. Под редакцией А. Л. Тахтаджяна, главный редактор чл.-кор. АН СССР, проф. А.А. Федоров . 1974 . Биологическая энциклопедия

Внешне слоевища красных водорослей весьма разнообразны, часто красивы и причудливы (табл. 20 23). Здесь можно встретить формы нитевидные и пластинчатые, цилиндрические и корковидные, пузыревидные и кораллоподобные, в разной мере… … Биологическая энциклопедия

Клетка основная структурная единица тела водорослей, представленных либо одноклеточными, либо многоклеточными формами. Совершенно уникальную группу составляют сифоновые водоросли: у них талломы не поделены на клетки, однако в цикле… … Биологическая энциклопедия

Воспроизведение себе подобных у водорослей совершается посредством вегетативного, бесполого и полового размножения. Вегетативное размножение одноклеточных водорослей заключается в делении особей надвое. У многоклеточных водорослей … Биологическая энциклопедия

В отличие от высших растений, целиком и полностью характеризующихся одним листостебельным типом строения (другая структура у них вызвана вторичным упрощением), водоросли в пределах слоевцового типа строения обнаруживают исключительное… … Биологическая энциклопедия

Rhodomonas salina … Википедия

- (носители окраски) этим именем можно назвать все окрашенные тела, заключающиеся в клетках растений, но специально им называются таковые, заключающиеся в клетках водорослей (см.), в отличие от хлорофилльных зерен (см.) и хромопластов (см.),… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Класс бангиевых объединяет одноклеточные, колониальные и многоклеточные формы паренхимного строения. Рост у них диффузный, в результате деления всех клеток слоевища. Клетки бангиевых одноядерные с одним звездчатым хлоропластом и одним… … Биологическая энциклопедия

Общая площадь планеты Земля составляет 510 млн. км2. На долю суши приходится 149 млн. км2, Мировой океан занимает 361 млн. км2. И суша и океан заселены растениями и животными. Разнообразие и тех и других очень велико. Ныне установлено… … Биологическая энциклопедия

Зеленые водоросли - самый обширный из всех отделов водорослей, насчитывающий по разным оценкам от 4 до 13 - 20 тысяч видов. Все они имеют зеленый цвет слоевищ, что обусловлено преобладанием в хлоропластах хлорофилла a и b над другими пигментами. Клетки некоторых представителей зеленых водорослей (Хламидомонас, Трентеполия, Гематококкус ) окрашены в красный или оранжевый цвета, что связано с накоплением вне хлоропласта каротиноидных пигментов и их производных.

В морфологическом отношении они отличаются большим разнообразием. Среди зеленых водорослей встречаются одноклеточные, колониальные, многоклеточные и неклеточные представители, активно подвижные и неподвижные, прикрепленные и свободноживущие. Чрезвычайно велик и диапазон их размеров - от нескольких микрометров (что сравнимо по размерам с бактериальными клетками) до 1–2 метров.

Клетки одноядерные или многоядерные, с одним или несколькими хроматофорами, содержащими хлорофилл и каротиноиды. Хлоропласты покрыты двумя мембранами и обычно имеют стигму, или глазок, - фильтр, проводящий синий и зеленый свет к фоторецептору. Глазок состоит из нескольких рядов липидных глобул. Тилакоиды - структуры, где локализованы фотосинтетические пигменты - собраны в стопки (ламеллы) по 2–6. В переходной зоне жгутиков есть звездчатое образование. Жгутиков чаще всего два. Основной компонент клеточной стенки – целлюлоза.

У хлорофит встречаются различные типы питания: фототрофное, миксотрофное и гетеротрофное. Запасной полисахарид зеленых водорослей – крахмал – откладывается внутри хлоропласта. Хлорофиты также могут накапливать липиды, которые откладываются в виде капель в строме хлоропласта и в цитоплазме.

Многоклеточные слоевища нитевидные, трубчатые, пластинчатые, кустистые или иного строения и разнообразной формы. Из известных типов организации таллома у зеленых водорослей отсутствует только амебоидный.

Они широко распространены в пресных и морских водах, в почве и в наземных местообитаниях (на почве, скалах, коре деревьев, стенах домов и пр.). В морях распространено около 1/10 от общего количества видов, которые растут обычно в верхних слоях воды до 20 м. Среди них есть планктонные, перифитонные и бентосные формы. Иначе говоря, зеленые водоросли освоили три основных среды обитания живых организмов: воду – землю – воздух.

Зеленые водоросли обладают положительным (движение к источнику света) и отрицательным (движение от яркого источника света) фототаксисом. Кроме интенсивности освещения, на фототаксис влияет температура. Положительным фототаксисом при температуре 160°С обладают зооспоры видов родов Гематококкус, Улотрикс, Ульва , а также отдельные виды десмидиевых водорослей, у которых движение клеток осуществляется за счет выделения слизи через поры в оболочке.

Размножение. Для зеленых водорослей характерно наличие всех известных способов размножения: вегетативное, бесполое и половое.

Вегетативное размножение у одноклеточных форм происходит делением клетки пополам. Колониальные и многоклеточные формы хлорофит размножаются частями тела (слоевища, или таллома).

Бесполое размножение у зеленых водорослей представлено широко. Осуществляется чаще подвижными зооспорами, реже неподвижными апланоспорами и гипноспорами. Клетки, в которых образуются споры (спорангии), в большинстве случаев ничем не отличаются от остальных вегетативных клеток таллома, реже они имеют иную форму и более крупные размеры. Формирующиеся зооспоры могут быть голыми или покрытыми жесткой клеточной стенкой. Количество жгутиков у зооспор варьирует от 2 до 120. Зооспоры разнообразной формы: шаровидные, эллипсоидные или грушевидные, одноядерные, лишенные обособленной оболочки, с 2–4 жгутиками на переднем, более заостренном конце и хлоропластом в расширенном заднем конце. Обычно они имеют пульсирующие вакуоли и стигму. Зооспоры образуются одиночно или, чаще, в числе нескольких из внутреннего содержимого материнской клетки, выходят наружу через образующееся в оболочке круглое или щелевидное отверстие, реже вследствие ее общего ослизнения. В момент выхода из материнской клетки зооспоры иногда окружены тонким слизистым пузыре, в скором времени расплывающимся (род Улотрикс).

У многих видов вместо зооспор или наряду с ними образуются неподвижные споры – апланоспоры. Апланоспоры - споры бесполого размножения, у которых отсутствуют жгутики, но имеются сократительные вакуоли. Апланоспоры рассматривают как клетки, у которых приостановлено дальнейшее развитие в зооспоры. Они также возникают из протопласта клетки в числе одной или нескольких, но не вырабатывают жгутиков, а, приняв шаровидную форму, одеваются собственной оболочкой, в образовании которой оболочка материнской клетки не участвует. Апланоспоры освобождаются вследствие разрыва или ослизнения оболочек материнских клеток и прорастают после некоторого периода покоя. Апланоспоры с очень толстыми оболочками называются гипноспорами. Они обычно принимают на себя функцию покоящейся стадии. У автоспор, которые представляют собой уменьшенные копии неподвижных вегетативных клеток, отсутствуют сократительные вакуоли. Образование автоспор коррелирует с завоеванием наземных условий, в которых вода не может всегда присутствовать в достаточном количестве.

Половое размножение осуществляется гаметами, возникающих в неизмененных, слегка измененных или значительно преобразованных клетках – гаметангиях. Подвижные гаметы монадного строения, двужгутиковые. Половой процесс у зеленых водорослей представлен различными формами: гологамия, конъюгация, изогамия, гетерогамия, оогамия. При изогамии гаметы морфологически совершенно подобны друг другу и различия между ними являются чисто физиологическими. Зигота одевается толстой оболочкой, нередко со скульптурными выростами, содержит большое количество запасных веществ и прорастает сразу или после некоторого периода покоя. При прорастании содержимое зиготы у большинства видов делится на четыре части, которые выходят из оболочки и прорастают в новые особи. Значительно реже гаметы развиваются в новый организм без слияния, сами по себе, без образования зиготы. Такое размножение называется партеногенезом , а споры, образующиеся из отдельных гамет, – партеноспорами .

При гетерогамии обе гаметы различаются между собой по величине и иногда по форме. Более крупные гаметы, часто менее подвижные, принято считать женскими, меньшие по величине и более подвижные – мужскими. В одних случаях различия эти невелики, и тогда говорят просто о гетерогамии, в других весьма значительны.

Если женская гамета неподвижна и напоминает больше яйцеклетку, то подвижная мужская становится сперматозоидом, а половой процесс получает название оогамии. Гаметангии, в которых возникают яйцеклетки, называются оогониями, от вегетативных клеток они отличаются как по форме, так и по величине. Гаметангии, в которых образуются сперматозоиды, называются антеридиями . Зигота, получившаяся в результате оплодотворения яйцеклетки сперматозоидом, формирует толстую оболочку и называется ооспорой .

При типичной оогамии яйцеклетки крупные, неподвижные и развиваются чаще всего по одной в оогонии, сперматозоиды мелкие, подвижные, образуются в антеридии в большом количестве. Оогонии и антеридии могут развиваться на одной особи, в этом случае водоросли однодомные; если они развиваются на разных особях – двудомные. Оплодотворенная яйцеклетка одевается толстой бурой оболочкой; нередко соседние с ней клетки дают короткие веточки, которые обрастают ооспору, оплетая ее однослойной корой.

Жизненные циклы . У большинства представителей зеленых водорослей жизненный цикл гаплобионтный с зиготической редукцией. У таких видов диплоидной стадией является только зигота – клетка, получающаяся в результате оплодотворения яйцеклетки сперматозоидом. Другой тип жизненного цикла – гаплодиплобионтный со спорической редукцией – встречается у Ульвовых, Кладофоровых и некоторых Трентеполиевых. Для этих водорослей характерно чередование диплоидного спорофита и гаплоидного гаметофита. Гаплодиплобионтный жизненный цикл с соматической редукцией известен только у Празиолы . Наличие диплобионтного жизненного цикла у Бриопсидовых и Дазикладиевых подвергается сомнению.

У некоторых Улотриксовых одна и та же особь может давать начало как зооспорам, так и гаметам. В других случаях зооспоры и гаметы образуются на разных особях, т.е. жизненный цикл водорослей включает в себя как половую (гаметофит), так и бесполую (спорофит) форму развития. Спорофит обычно диплоидный, т.е. имеет в клетках двойной набор хромосом, гаметофит гаплоидный, т.е. имеет одинарный набор хромосом. Это наблюдается в тех случаях, когда мейоз происходит при образовании спор (спорическая редукция) и часть жизненного цикла водоросли от зиготы до образования спор проходит в диплофазе, а часть от споры до образования гамет в гаплофазе. Такой цикл развития характерен для видов рода Ульва.

В пределах Улотриксовых водорослей широко распространена зиготическая редукция, когда мейоз происходит при прорастании зиготы. Диплоидной в этом случае оказывается только зигота, весь остальной жизненный цикл протекает в гаплофазе. Значительно реже встречается гаметическая редукция, когда мейоз происходит при образовании гамет. В этом случае гаплоидными являются только гаметы, а весь остальной цикл диплоидный.

Систематика

До сих пор отсутствует единая устоявшаяся система зеленых водорослей, особенно в отношении группировки порядков в различные предлагаемые классы. Очень долго типу дифференциации таллома придавали основное значение при выделении порядков у зеленых водорослей. Однако в последнее время в связи с накоплением данных об ультраструктурных особенностях жгутиковых клеток, типе митоза и цитокинеза и др. очевидна гетерогенность многих таких порядков.

Отдел включает 5 классов: Ульвофициевые– Ulvophyceae, Брипсодовые – Bryopsidophyceae, Хлорофициевые – Chlorophyceae , Требуксиевые –Trebouxiophyceae , Празиновые – Prasinophyceae .

Класс Ульвофициевые – Ulvophyceae

Известно около 1 тысячи видов. Название класса происходит от типового рода Ulva . Включает виды с нитчатым и пластинчатым талломом. Жизненные циклы разнообразны. Виды преимущественно морские, реже пресноводные и наземные. Некоторые входят в состав лишайников. У морских представителей в клеточных стенках может откладываться известь.

Порядок Улотриксовые – Ulotrichales .

Род Улотрикс (рис. 54). Виды Улотрикса обитают чаще в пресных, реже в морских, солоноватых водоемах и в почве. Они прикрепляются к подводным предметам, формируя ярко-зеленые кустики размером до 10 см и более. Неразветвленные нити Улотрикса , состоящие из одного ряда цилиндрических клеток с толстыми целлюлозными оболочками, прикрепляются к субстрату бесцветной конической базальной клеткой, выполняющей функции ризоида. Характерным является строение хроматофора, который имеет вид постенной пластинки, образующей незамкнутый поясок или кольцо (цилиндр).

Рис. 54. Улотрик c (по:): 1 – нитчатый таллом, 2 – зооспора, 3 – гамета, 4 – копуляция гамет

Бесполое размножение Улотрикса осуществляется 2 следующими способами: распадением нити на короткие участки, развивающиеся в новую нить, или образованием в клетках четырехжгутиковых зооспор. Зооспоры выходят из материнской клетки, сбрасывают один за другим жгутики, прикрепляются боком к субстрату, покрываются тонкой целлюлозной оболочкой и прорастают в новую нить. Половой процесс изогамный. После оплодотворения зигота вначале плавает, затем оседает на дно, теряет жгутики, вырабатывает плотную оболочку и слизистую ножку, которой прикрепляется к субстрату. Это покоящийся спорофит. После периода покоя происходит редукционное деление ядра и зигота прорастает зооспорами. Так в жизненном цикле Улотрикса происходит чередование поколений, или смена половой и бесполой форм развития: нитчатый многоклеточный гаметофит (поколение, формирующее гаметы) сменяется одноклеточным спорофитом – поколением, которое представлено своеобразной зиготой на ножке и способно образовывать споры.

Порядок Ульвовые - Ulvales . Имеют пластинчатое, мешковидное, трубчатое или, редко, нитчатое слоевище всевозможных оттенков зеленого цвета. По краю пластины могут быть волнистыми либо складчатыми, для прикрепления к субстрату снабжены короткой ножкой или основанием с небольшим базальным диском. Морские и пресноводные виды. Наиболее распространены в прибрежных водах дальневосточных морей виды родов Ульва, Монострома, Корнманния и Ульвария.

Род Ульва (рис. 55). Таллом представляет собой светло-зеленую или ярко-зеленую, тонкую двуслойную, нередко перфорированную пластину либо однослойную полую трубку, прикрепленную к субстрату суженным в короткий черешок основанием.

Рис. 55. Ульва : А внешний вид Ульвы окончатой , Б – поперечный срез таллома, В – внешний вид Ульвы кишечницы

Смена форм развития в жизненном цикле Ульвы сводится к изоморфной, когда бесполая стадия (спорофит) и половая стадия (гаметофит) морфологически подобны друг другу, и гетероморфной, когда они морфологически различны. Гаметофит многоклеточный, пластинчатый, спорофит одноклеточный. На гаметофитах образуются двужгутиковые гаметы, на спорофитах - четырехжгутиковые зооспоры.

Виды рода встречаются в морях всех климатических зон, хотя предпочитает теплые воды. Например, на мелководье Черного и Японского морей Ульва - один из самых массовых родов водорослей. Многие виды Ульвы выносят опреснение воды; их часто можно встретить в устьях рек.

Класс Бриопсидовые Bryopsidophyceae

Известно около 500 видов. Слоевище неклеточное. Образовано простыми или переплетенными сифонными нитями, образующими сложные структуры. Таллом в виде пузырей, кустиков, губчатых, дихотомически разветвленных кустов. Слоевище сегментированное, имитирующее многоклеточное, из нескольких или многих ядерных клеток. Нити и кустики всех оттенков зеленого или буроватого цвета.

Порядок Бриопсидовые Bryopsidales

Большинство видов встречается в пресных и солоноватых водоемах. Некоторые из них растут на почве, на камнях, песке и иногда на солончаках.

Род Бриопсис – нитевидные кустики до 6-8 см высоты, перисто или неправильно разветвленные, верхние веточки с перетяжками у основания. Слоевище сифонного неклеточного строения. Растет единичными кустиками или небольшими куртинами в в прибрежной зоне, обитает в теплых и умеренных морях (приложение, 7Б).

Род Кодиум – шнуровидные дихотомически разветвленные кустики 10–20 см высоты, губчатые. мягкие, прикрепляются дисковидной подошвой. Внутренняя часть слоевища образована сложно переплетенными сифонными нитями. Растет на мягких и твердых грунтах в сублиторальной зоне до глубины 20 м одиночными растениями или небольшими группами (приложение, 7А, Б).

Род Каулерпа включает около 60 видов морских водорослей, ползучие, распростертые на грунте части слоевища которых имеют вид ветвящихся цилиндров, достигающих в длину нескольких десятков сантиметров. Через определенные интервалы вниз от них отходят обильно ветвящиеся ризоиды, закрепляющие растение в грунте, а вверх – плоские листообразные вертикальные побеги, в которых сосредоточены хлоропласты.

Рис. 56. Каулерпа: А – внешний вид таллома; Б – срез таллома с целлюлозными балками

Таллом каулерпы, несмотря на свои крупные размеры, не имеет клеточного строения – в нем полностью отсутствуют поперечные перегородки, и формально он представляет собой одну гигантскую клетку (рис.56). Такое строение таллома называют сифонным . Внутри таллома каулерпы располагается центральная вакуоль, окруженная слоем цитоплазмы, содержащей многочисленные ядра и хлоропласты. Различные части таллома растут у своих верхушек, где скапливается цитоплазма. Центральную полость во всех частях таллома пересекают цилиндрические скелетные тяжи – целлюлозные балки, придающие телу водоросли механическую прочность.

Каулерпа легко размножается вегетативно: при отмирании более старых частей таллома отдельные участки его с вертикальными побегами становятся независимыми растениями. Виды этого рода обитают главным образом в тропических морях, и лишь немногие заходят в субтропические широты, например, распространенная в Средиземном море Каулерпа прорастающая . Эта водоросль предпочитает мелководье со спокойной водой, например, лагуны, защищенные от действия постоянного прибоя коралловыми рифами, и поселяется как на различных твердых субстратах – камнях, рифах, скалах, на песчаном и илистом грунте.

Класс Хлорофициевые Chlorophyceae

Известно около 2,5 тысяч видов. Слоевище одноклеточное или колониальное моннадное, свободно живущее.

Порядок Вольвоксовые - Volvocales .

Род Хламидомонада (рис. 57)включает свыше 500 видов одноклеточных водорослей, которые обитают в пресных, мелких, хорошо прогреваемых и загрязненных водоемах: прудах, лужах, канавах и т.п. При их массовом размножении вода приобретает зеленую окраску. Хламидомонада также обитает на почве и на снегу. Ее тело имеет овальную, грушевидную или шаровидную форму. Клетка одета плотной оболочкой, нередко отстающей от протопласта, с двумя одинаковыми жгутиками на переднем конце; с их помощью хламидомонада активно передвигается в воде. Протопласт содержит 1 ядро, чашевидный хроматофор, стигму и пульсирующие вакуоли.

Рис. 57. Строение и развитие Хламидомонады: А – вегетативная особь; Б – пальмеллевидная стадия; В – размножение (молодые особи внутри материнской клетки)

Хламидомонады размножаются преимущественно бесполым путем. При подсыхании водоема они размножаются делением клетки пополам. Клетки останавливаются, теряют жгутики, стенки их клеток ослизняются, и в таком неподвижном состоянии клетки переходят к делению. Стенки образующихся при этом дочерних клеток также ослизняются, так что в итоге образуется система вложенных друг в друга слизистых обверток, в которых группами располагаются неподвижные клетки. Это - пальмеллевидное состояние водоросли. При попадании в воду клетки снова образуют жгутики, покидают материнскую клетку в виде зооспор и переходят к одиночному монадному состоянию.

В благоприятных условиях хламидомонада интенсивно размножается другим путем – клетка останавливается, и ее протопласт, несколько отстав от стенки, последовательно делится продольно на две, четыре или восемь частей. Эти дочерние клетки образуют жгутики и выходят наружу в виде зооспор, которые вскоре снова приступают к размножению.

Половой процесс у хламидомонады изогамный или оогамный. Гаметы меньших размеров образуются внутри материнской клетки так же, как и зооспоры, но в большем количестве (16, 32 или 64). Оплодотворение происходит в воде. Оплодотворенная яйцеклетка покрывается многослойной оболочкой и оседает на дно водоема. После периода покоя зигота делится мейотически с образованием 4 гаплоидных дочерних особей хламидомонады.

Род Вольвокс – наиболее высокоорганизованные представители порядка, образуют гигантские колонии, состоящие из сотен и тысяч клеток. Колонии имеют вид слизистых, диаметром до 2 мм, шариков, в периферическом слое которых расположено до 50 тыс. клеток со жгутиками, сросшихся своими боковыми ослизненными стенками друг с другом и соединенных плазмодесмами (рис. 58). Внутренняя полость

Рис. 58. Внешний вид колоний Вольвокса

шара заполнена жидкой слизью. В колонии существует специализация клеток: периферическую ее часть составляют вегетативные клетки, а между ними разбросаны более крупные – репродуктивные.

Около десятка из клеток колонии – это гонидии, клетки бесполого размножения. В результате многократных делений они дают начало молодым, дочерним колониям, которые выпадают внутрь материнского шара и освобождаются лишь после его разрушения. Половой процесс – оогамия. Оогонии и антеридии возникают также из репродуктивных клеток. Колонии однодомные и двудомные. Виды рода встречаются в прудах и старицах рек, где в период интенсивного размножения вызывают «цветение» воды.

Класс Требуксиевые – Trebouxiophyceae

Класс назван по типовому роду Trebouxia . Включает в основном одноклеточные коккоидные формы. Встречаются сарциноидные и нитчатые представители. Пресноводные и наземные, реже морские формы, многие формируют симбиозы. Около 170 видов.

Порядок Хлорелловые - Chlorellales . Объединяет коккоидных автоспоровых представителей.

Род Хлорелла – одноклеточные водоросли в виде неподвижного шарика. Клетка одета гладкой оболочкой; содержит одно ядро и пристенный, цельный, рассеченный или лопастной хроматофор с пиреноидом. Клеточная стенка ряда видов наряду с целлюлозой содержит спорополленин – чрезвычайно устойчивое к действию различных ферментов вещество, встречающееся также в пыльцевых зернах и спорах высших растений. Размножается хлорелла бесполым путем, образуя до 64 неподвижных автоспор. Полового размножения нет. Хлорелла распространена в различных водоемах, встречается на сырой почве, коре деревьев, входит в состав лишайников.

Порядок Требуксиевые - Trebouxiales . Включает роды и виды, входящие в состав лишайников.

Род Требуксия – одноклеточная водоросль. Сферические клетки имеют единственный осевой звездчатый хлоропласт с одним пиреноидом. Бесполое размножение осуществляется голыми зооспорами. Встречается или в свободноживущем виде в наземных местообитаниях (на коре деревьев), или как фотобионт лишайников.

Класс Празиновые – Prasinophyceae

Название класса происходит от греч. prasinos – зеленый. Жгутиковые или, реже, коккоидные или пальмеллоидные одноклеточные организмы.

Порядок Пирамимонадовые - Pyramimonadales . Клетки несут 4 или больше жгутиков, три слоя чешуек. Митоз открытый, с веретеном, сохраняющимся в телофазе, цитокинез идет за счет образования борозды деления.

Род Пирамимонас одноклеточные организмы (рис. 59). От переднего конца клетки отходит 4–16 жгутиков, которые могут быть в пять раз длиннее клетки. Хлоропласт обычно единственный, с одним пиреноидом и одним или больше глазками. Клетки и жгутики покрыты несколькими слоями чешуек. Широко распространены в пресных, солоноватых и морских водах. Встречаются в планктоне и бентосе, могут вызывать "цветение" воды.

Рис. 59. Внешний вид водоросли Пирамимонас

Порядок Хлородендровые Chlorodendrales . Клетки сжатые, с четырьмя жгутиками, покрыты текой, митоз закрытый, цитокинез идет за счет образования борозды деления.

Род Тетраселмис может встречаться в виде подвижных четырехжгутиковых клеток или в виде неподвижных клеток, прикрепленных слизистыми ножками. Клетки покрыты текой. При делении клеток новая тека формируется вокруг каждой дочерней клетки внутри теки материнской. На переднем конце клетки через отверстие в теке выходят жгутики, которые покрыты волосками и чешуйками. Хлоропласт один, с базальным пиренодом. Клетки обычно зеленого цвета, но иногда приобретают красную окраску, что связано с накоплением каротиноидов. Морские представители, могут обитать в морских плоских червях.

Экология и значение

Зеленые водоросли широко распространены по всему миру. Большинство из них можно встретить в пресных водоемах, но немало солоноватоводных и морских форм. Нитчатые зеленые водоросли, прикрепленные или неприкрепленные, наряду с диатомовыми и синезелеными являются преобладающими бентосными водорослями континентальных водоемов. Они встречаются в водоемах различной трофности (от дистрофных до эвтрофных) и с различным содержанием органических веществ (от ксено- до полисапробных), водородных ионов (от щелочных до кислых), при различных температурах (термо-, мезо- и криофилы).

Среди зеленых водорослей имеются планктонные, перифитонные и бентосные формы. В группе морского пикопланктона празиновая водоросль Остреококкус считается самой маленькой эукариотной свободноживущей клеткой. Есть виды зеленых водорослей, которые приспособились к жизни в почве и наземных местообитаниях. Их можно встретить на коре деревьев, скалах, различных постройках, на поверхности почв и в толще воздуха. В этих местообитаниях особенно распространены представители родов Трентеполия и Требуксия . Зеленые водоросли вегетируют в горячих источниках при температуре 35–52°С, а в отдельных случаях до 84°С и выше, нередко при повышенном содержании минеральных солей или органических веществ (сильно загрязненные горячие сточные воды заводов, фабрик, электростанций или атомных станций). Они также преобладают среди криофильных видов водорослей. Они могут вызывать зеленое, желтое, голубое, красное, коричневое, бурое или черное «цветение» снега или льда. Эти водоросли находятся в поверхностных слоях снега или льда и интенсивно размножаются в талой воде при температуре около 0 °С. Лишь немногие виды имеют стадии покоя, тогда как большинство лишены каких-либо специальных морфологических приспособлений к низким температурам.

В пересоленных водоемах преобладают одноклеточные подвижные зеленые водоросли – гипергалобы, клетки которых лишены оболочки и окружены лишь плазмалеммой. Эти водоросли отличаются повышенным содержанием хлористого натрия в протоплазме, высоким внутриклеточным осмотическим давлением, накоплением в клетках каротиноидов и глицерина, большой лабильностью ферментных систем и обменных процессов. В соленых водоемах они нередко развиваются в массовом количестве, вызывая красное или зеленое «цветение» соленых водоемов.

Микроскопические одноклеточные, колониальные и нитчатые формы зеленых водорослей приспособились к неблагоприятным условиям существования в воздушной среде. В зависимости от степени увлажнения их подразделяют на 2 группы: воздушные водоросли, обитающие в условиях только атмосферного увлажнения, и, следовательно, испытывающие постоянную смену влажности и высыхания; водновоздушные водоросли, подвергающиеся действию постоянного орошения водой (под брызгами водопада, прибоя и т. д.). Условия существования водорослей аэрофильных сообществ очень своеобразны и характеризуются, прежде всего, частой и резкой сменой двух факторов - влажности и температуры.

Сотни видов зеленых водорослей обитают в почвенном слое. Почва как биотоп имеет сходство и с водными и с воздушными местообитаниями: в ней есть воздух, но насыщенный водяными парами, что обеспечивает дыхание атмосферным воздухом без угрозы высыхания. Интенсивное развитие водорослей как фототрофных организмов возможно только в пределах проникновения света. В целинных почвах это поверхностный слой почвы толщиной до 1 см, в обрабатываемых почвах он немного толще. Однако в толще почвы, куда не проникает свет, жизнеспособные водоросли обнаруживаются на глубине до 2 м в целинных почвах и до 3 м – в пахотных. Это объясняется способностью некоторых водорослей переходить в темноте к гетеротрофному питанию. Многие водоросли сохраняются в почве в покоящемся состоянии.

Для поддержания своей жизнедеятельности почвенные водоросли имеют некоторые морфологические и физиологические особенности. Это относительно мелкие размеры почвенных видов, а также способность к обильному образованию слизи – слизистых колоний, чехлов и обверток. Благодаря наличию слизи, водоросли быстро поглощают воду при увлажнении и запасают ее, замедляя высыхание. Характерной чертой почвенных водорослей является «эфемерность» их вегетации – способность быстро переходить из состояния покоя к активной жизнедеятельности и наоборот. Они также способны переносить разные колебания температуры почвы. Диапазон выживаемости ряда видов лежит в пределах от -200 до +84 °С и выше. Наземные водоросли составляют важную часть растительности Антарктиды. Они окрашены почти в черный цвет, поэтому температура их тела оказывается выше температуры окружающей среды. Почвенные водоросли являются также важными компонентами биоценозов аридной (засушливой) зоны, где почва в летнее время нагревается до 60–80°С. Защитой от избыточной инсоляции служат темные слизистые чехлы вокруг клеток.

Своеобразную группу представляют эндолитофильные водоросли, связанные с известковым субстратом. Во-первых, это – сверлящие водоросли. Например, водоросли из рода Гомонтия сверлят раковины перловиц и беззубок, внедряются в известковый субстрат в пресных водоемах. Они делают известковый субстрат рыхлым, легко поддающимся различным воздействиям химических и физических факторов. Во-вторых, ряд водорослей в пресных и морских водоемах способны переводить растворенные в воде соли кальция в нерастворимые и отлагающие их на своих талломах. Ряд тропических зеленых водорослей, в частности Галимеда , откладывает в талломе карбонат кальция. Они принимают активное участие в постройке рифов. Гигантские залежи останков Галимеды , иногда достигающие 50 м в высоту, встречаются в континентальных шельфовых водах, связанных с Большим Барьерным Рифом в Австралии и других регионах, на глубине от 12 до 100 м.

Зеленые требуксиевые водоросли, вступая в симбиотические отношения с грибами, входят в состав лишайников. Около 85% лишайников содержат в качестве фотобионта одноклеточные и нитчатые зеленые водоросли, 10% - цианобактерии и 4% (и более) содержат одновременно синезеленые и зеленые водоросли. В качестве эндосимбионтов они существуют в клетках простейших, криптофитовых водорослей, гидр, губок и некоторых плоских червей. Даже хлоропласты отдельных сифоновых водорослей, например Кодиума , становятся симбионтами для голожаберных моллюсков. Эти животные питаются водорослями, хлоропласты которых остаются жизнеспособными в клетках дыхательной полости, причем на свету они очень эффективно фотосинтезируют. Ряд зеленых водорослей развивается на шерсти млекопитающих. Эндосимбионты, претерпевая морфологические изменения по сравнению со свободноживущими представителями, не теряют способности фотосинтезировать и размножаться внутри клеток хозяина.

Хозяйственное значение . Повсеместное распространение зеленых водорослей определяет их огромное значение в биосфере и хозяйственной деятельности человека. Благодаря способности к фотосинтезу они являются основными продуцентами громадного количества органических веществ в водоемах , которые широко используются животными и человеком. Поглощая из воды углекислый газ, зеленые водоросли насыщают ее кислородом, необходимым всем живым организмам. Велика их роль в биологическом круговороте веществ. Быстрое размножение и очень высокая скорость ассимиляции (примерно в 3-5 раз выше, чем у наземных растений) приводят к тому, что за сутки масса водоросли увеличивается более чем в 10 раз. При этом в клетках хлореллы накапливаются углеводы (в селекционных штаммах их содержание достигает 60%), липиды (до 85%), витамины B, С и К. Белок хлореллы, на долю которого может приходиться до 50% сухой массы клетки, содержит все незаменимые аминокислоты. Уникальная способность видов Хлореллы ассимилировать от 10 до 18% световой энергии (против 1–2% у наземных растений) позволяет использовать эту зеленую водоросль для регенерации воздуха в замкнутых биологических системах жизнеобеспечения человека при длительных космических полетах и подводном плавании.

Ряд видов зеленых водорослей используют как индикаторные организмы в системе мониторинга водных экосистем. Наряду с фототрофным способом питания многие одноклеточные зеленые водоросли (хламидомонады) способны всасывать через оболочку растворенные в воде органические вещества, что способствует активному очищению загрязненных вод, в которых развиваются эти виды. Поэтому их применяют для очистки и доочистки загрязненных вод, а также как корм в рыбохозяйственных водоемах.

Некоторые виды зеленых водорослей используются населением ряда стран в пищу . Для пищевых целей, например, в Японии специально культивируют виды рода Ульва . Эти водоросли широко используют, особенно в странах Юго-Восточной Азии, под названием Морского салата. Ульвовые по содержанию белка (до 20%) заметно превосходят другие виды водорослей. Отдельные виды зеленых водорослей используют в качестве продуцентов физиологически активных веществ. Зеленые водоросли - хороший модельный объект для разнообразных биологических исследований. Виды Гематококкуса культивируют для получения астаксантина, Ботриококкус - для получения липидов. В то же время с «цветением» воды одного из озер на Тайване, вызванного Ботриококкусом, связывают гибель рыб.

Виды родов Хлорелла и Хламидомонас - модельные объекты для изучения фотосинтеза в растительных клетках. Хлорелла , благодаря очень высоким темпам размножения, является объектом массового культивирования для использования в различных областях

Поверхностные пленки зеленых водорослей имеют большое противоэрозионное значение . Скрепляющее значение имеют некоторые одноклеточные виды зеленых водорослей, выделяющие обильную слизь. Слизистые вещества клеточных оболочек склеивают частицы почвы. Развитие водорослей влияет на структурирование мелкозема, придавая ему водостойкость и препятствуя выносу с поверхностного слоя. Влажность почвы под водорослевыми пленками обычно выше, чем там, где они отсутствуют. Кроме того, пленки уменьшают водопроницаемость почвы и замедляют испарение воды, что оказывает влияние и на солевой режим почвы. Уменьшается вымывание из почвы легкорастворимых солей; их содержание под макроразрастаниями водорослей выше, чем на других участках. В то же время замедляется поступление солей из глубоких слоев почвы.

Почвенные водоросли оказывают влияние и на рост и развитие высших растений. Выделяя физиологически активные вещества, они ускоряют рост проростков, особенно их корней.

Среди зеленых водорослей, обитающих в загрязненных водоемах, доминируют обычно хлорококковые, устойчивые к длительному воздействию многих токсических веществ.

Клетки водорослей способны аккумулировать из воды различные химические элементы, причем коэффициенты их накопления достаточно высоки. Мощными концентраторами являются пресноводные зеленые водоросли, особенно нитчатые. При этом интенсивность накопления в них металлов гораздо выше, чем в других пресноводных гидробионтах. Немалый интерес представляет способность водорослей концентрировать в себе радиоактивные элементы. Отмершие клетки водорослей удерживают накопленные элементы не менее прочно, чем живые, а в некоторых случаях десорбция из мертвых клеток меньше, чем из живых. Способность ряда родов (Хлорелла, Сценедесмус и др.) концентрировать и прочно удерживать в своих клетках химические элементы и радионуклиды позволяет использовать их в специализированных системах очистки для дезактивации промышленных сточных вод, например для дополнительной очистки слабоактивных сточных вод АЭС.

Некоторые зеленые водоросли являются антагонистами вируса гриппа, полиовируса и др. Выделяемые водорослями биологически активные вещества играют важную роль в обеззараживании воды и подавлении жизнедеятельности патогенной микрофлоры.

В специальных биологических прудах сообщества водорослей и бактерий используют для разложения и детоксикации гербицидов . Доказана способность ряда зеленых водорослей гидролизовать гербицид пропанил, который быстрее разрушается бактериями.

Контрольные вопросы

    Назовите характерные черты строения клетки зеленых водорослей.

    Какие пигменты и типы питания известны у зеленых водорослей?

    Как размножаются зеленые водоросли? Что такое зооспоры, апланоспоры, автоспоры?

    Какие классы выделяют у зеленых водорослей?

    Назовите характерные особенности зеленых водорослей класса Ульвофициевые.

    Назовите характерные особенности зеленых водорослей класса Бриопсидовые.

    Назовите характерные особенности зеленых водорослей класса Хлорофициевые.

    Назовите характерные особенности зеленых водорослей класса Требуксиевые.

    Назовите характерные особенности зеленых водорослей класса Празиновые.

    В каких местообитаниях встречаются зеленые водоросли? Охарактеризуйте их основные экологические группы.

    Роль и значение зеленых водорослей в природе.

    Каково хозяйственное значение зеленых водорослей?

    Что такое «цветение воды»? Участие зеленых водорослей в биологической очистке вод.

    Зеленые водоросли как нетрадиционные источники энергии.

Водоросли, одноклеточные и многоклеточные формы бентосных водорослей. Здесь встречаются все морфологические типы слоевища , кроме ризоподиальных одноклеточных и крупных многоклеточных форм со сложным строением. Многие нитчатые зелёные водоросли крепятся к субстрату только на ранних стадиях развития, затем они становятся свободноживущими, формируя маты или шары.

Зелёные водоросли

Разнообразие сифоновых водорослей . Иллюстрация из книги Эрнста Геккеля Kunstformen der Natur , 1904
Научная классификация
Международное научное название

Chlorophyta Pascher , 1914

Зелёные водоросли - самый обширный на данное время отдел водорослей: по приблизительным подсчётам сюда входит от 13 000 до 20 000 видов. Все они отличаются в первую очередь чисто-зелёным цветом своих слоевищ, сходным с окраской высших растений и вызванным преобладанием хлорофилла над другими пигментами .

Строение

Жгутиковые клетки зелёных водорослей являются изоконтами - жгутики имеют сходную структуру, хотя они могут различаться по длине. Обычно имеется два жгутика, но их может быть также четыре или много. Жгутики зелёных водорослей не имеют мастигонем (в отличие от гетероконт), но могут иметь изящные волоски или чешуйки.

Жизненные циклы

Жизненные циклы зелёных водорослей очень разнообразны. Здесь встречаются всевозможные типы.

Гаплобионтный с зиготической редукцией (Hydrodictyon reticulatum , Eudorina ). Двужгутиковые гаметы освобождаются из родительской клетки через пору в её оболочке, слияние гамет осуществляется с помощью трубки. Далее зигота превращается в покоящуюся зигоспору, а после периода физиологического покоя прорастает с образованием 4 зооспор (в результате мейотического деления). Каждая зооспора формирует полиэдр и прорастает, формируя небольшие сферические сеточки из слипшихся зооспор.

Гапло-диплобионтный со спорической редукцией (Ulva , Ulothrix , некоторые виды Cladophora ). Двужгутиковые изогаметы выходят из материнской клетки, после чего гаметы образованные разными нитями сливаются в воде. Образуется четырехжгутиковая зигота, которая активно парит в воде. После этого она опускается на какой либо субстрат и покрывается плотной оболочкой, превращаясь таким образом в дубинкообразную клетку (кодиолум), далее следует стадия физиологического покоя. При наступлении благоприятных условий прорастает в 4-16 зооспор или апланоспор, которые после непродолжительного периода плавания прикрепляются к субстрату и прорастают в новые нити. Активируют выход из покоящегося состояния разные факторы: повышение температуры, изменение среды и др.

Диплобионтный с гаметической редукцией (Bryopsis ). Планозигота оседает и прорастает в нитчатое слоевище с крупным ядром, ядро делится таким образом образуются стефаноконтные зооспоры прорастающие в вегетативный таллом.

Особенно много зелёных водорослей развивается весной, когда все камни на литорали бывают покрыты сплошным изумрудным налётом из зелёных водорослей, резко контрастирующим с белым снегом, лежащим на прибрежных камнях. Ворсистый зелёный ковер на камнях образуют развивающиеся нитчатки - улотрикс (Ulothrix ) и уроспора (Urospora ). Летом часто развивается много эгагропилы (Aegagropila linnaei ) (syn. Cladophora aegagropila ), которая нередко имеет вид зелёной слизистой массы. На открытом скалистом побережье ярко-зелёные разветвленные кустики образует акросифония (Acrosiphonia ).

Роль в природе и использование

Некоторые зелёные водоросли (например, ульва) широко употребляются в пищу . Хлореллу используют в качестве индикатора уровня загрязнения воды и содержат на космических кораблях, подводных лодках для очистки воздуха от углекислого газа.

Тема. Бурые водоросли. Красные водоросли или багрянки.
Цель: познакомить учащихся с особенностями строения, процессами жизнедеятельности и разнообразием бурых и красных водорослей, показать их значение в природе; Далее формировать общие учебные умения и навыки работы с микроскопом, микропрепаратами и учебником, находить в тексте ответы на поставленные вопросы, сравнивать, обобщать, делать выводы.
Оборудование: таблица «Водоросли», стенд «Эволюция растений».
I . Мотивация учебной деятельности. / Беседа /
1.Назовите признаки присущие растениям?
2. Почему растения имеют зеленую окраску?
3.Какой способ питания присущ растениям?
II . Актуализация опорных знаний. / Беседа /
1.Назовите признаки присущие диатомовых водорослей. Какова их строение?
2.Какой тип питания в диатомовых водорослей?
3. В каких средах обитают диатомовые водоросли? Какие у них есть жизненныеформы?
4. По каким признакам различают диатомовые водоросли? Как движутся диатомовыеводоросли?
5. Какие особенности запасания питательных веществ в диатомовых водорослей?
6. Назовите, как происходит размножение у диатомовых водорослей?
7. Какова роль диатомовых водорослей в природе и хозяйственной деятельностичеловека?
III . Изучение нового материала.
1. Бурые водоросли. / Рассказ, беседа, сообщения учащихся, заполнение таблицы /
Бурые водоросли - многоклеточные растения, наиболее распространены в морях умеренных ихолодных широт. Бурую окраску обусловлено наличием зеленых, желтых икоричневых пигментов. Основная составляющая растений, вещество ламинарин, такжеоткладываются масла, крахмал и йод. Есть все типы размножения: вегетативное - осуществляется частями слоевища, бесполое - с помощью выводковых почек,
спорами и зооспорами и половое с помощью гамет, образующихся в гаметангиях. Свойственно четкое чередование полового и бесполого поколений. живут на средних глубинах 20 - 30 м, где поглощают зеленые и голубые лучи. имеют сильно разветвленное слоевище. Органы прикрепления - ризоиды
Клетки размещены в несколько рядов. Клеточные слои представлены двумя слоями. Внешний слой слизистый (пектины и соли альгинаты), а внутренность образована из целлюлозы.

Значение бурых водорослей в природе - они способны создавать большое количество органического вещества, а для человека - наличием в них ценных химических веществ: ламинарин, альгинаты, питательные вещества, витамины, йод, бром, используют в качестве удобрения. Представители: ламинария или морская капуста, укус, накроцистис, саргассум, цистозейра.

2.Красные водоросли или багрянки. / Рассказ, беседа, сообщения учащихся, заполнения таблицы /
Красные водоросли живут на глубине 200 - 250 м. Это в основном многоклеточные организмы, только некоторые виды этих водорослей являются одноклеточными или колониальными.
Их талом расчленен и имеет вид кустиков или пластинок. к субстрату прикрепляется с помощью ризоидов или подошвы. клеточный покров
представлен несколькими слоями в составе которых есть целлюлоза пектины и агар, у некоторых видов откладываются минеральные соли. Кроме зеленых пигментов красные водоросли содержат красные, синие и желтые пигменты. Красные и синие пигменты - фикобилины. Разное сочетание фикобилины с желтыми и зелеными пигментами придаёт розовое, красное, оранжево-желтое, фиолетовое или почти черную окраску. клетки в них одно и многоядерные. Основное вещество - багрянковый крахмал.
Размножение осуществляется вегетативно - частями таллома и дополнительными «Побегами», Неполовой - спорами, поло - с участием гамет. Ни спор, ни гамет багрянок не имеют жгутиков. В них отсутствуют жгутиковые стадии. Красные водоросли - преимущественно морские организмы, только отдельные виды встречаются в пресных водоемах и влажной почве суши. Красные водоросли - источник пищи для
морских животных, обогащают водоемы кислородом, участвуют в самоочищении
воды. Они имеют большое хозяйственное значение. Их используют в пищу, на корм скоту, как удобрение, в медицине, добывают йод. Представители: порфира, Коралина, филлофора.

I V. Обобщение и систематизация изученного.беседа
1.Назовите характерные признаки бурых водорослей?
2.Назовите характерные признаки красных водорослей?
3.Бурые водоросли, Какое строениеОни имеют? Какие имеют они пигменты?
4. Какое устроение имеют красные водоросли? Какие пигменты они имеют?
5. Как размножаются бури и красные водоросли?
6.Какая значимость бурых водорослей в природе и в хозяйственной деятельности человека?
тестирование
1.Колор бурых водорослей определяют такие пигменты: а) красные; б) коричневые; в) зеленые; г) желтые д) синие.
2.Колор красных водорослей определяют такие пигменты: а) красные; б) желтые; в) бури; г) синие; д) зеленые.
3. Исключительно многоклеточные организмы - это: а) зеленые водоросли; б) диатомовые водоросли; в) бурые водоросли; г) красные водоросли.
4. Для пищевой промышленности вещество ламинарин получают из: а) бурых; б) диатомовых; в) зеленых; г) красных водорослях.
5.Половые гаметы образуются в специальных органах гаметангиях в а) зеленых; б) бурых; в) диатомовых; г) красных водорослях.
6.В процессе размножения отсутствуют жгутиковые стадии в: а) зеленых; б) бурых; в) диатомовых; г) красных водорослей.
7.Чёткое чередование поколений свойственно: а) зеленым; б) диатомовым; в) бурым; г) красным водорослям.
8.Покров клеточный представлен двумя слоями в: а) зеленых; б) диатомовых; в) бурых; г) красных водорослей.
9.Запас вещества багрянковый крахмал откладывается в клетках: а) зеленых; б) диатомовых; в) бурых; г) красных водорослей.
10.К жизни в холодных морях на глубине 20 - 30 м приспособлены а) зеленые; б) диатомовые; в) красные водоросли; г) бури.
11.Фикобилины - это сочетание таких пигментов а) бурых и желтых; б) красных и синих; в) желтых и коричневых.
12.В состав клеток слоевища красных водорослей входят следующие вещества: а) агар и минеральные соли; б) пектиновые вещества и альгинаты.
ответы:

V. Итоги урока
Обратная связь На сегодняшнем уроке я понял... Узнал... Оценка работы учащихся на уроке
VI . Домашнее задание:
1.Прочитать §30, §31 конспект;
2.Проработать задания на с.130, 134.
3.Подготовить сообщение «События в природе, обусловивших выход растений на сушу »,« Высшие споровые растения ».

Отдел организмов, рассматриваемая здесь как водоросли, очень разнообразен и не представляет единого таксона. Эти организмы неоднородны по своему строению и происхождению.

Водоросли - автотрофные растения, в их клетках присутствуют различные модификации хлорофилла и другие пигменты, обеспечивающие фотосинтез. Водоросли обитают в пресной и морской , а также на суше, на поверхности и в толще почвы, на коре деревьев, камнях и других субстратах.

Водоросли относятся к 10 отделам из двух царств: 1) Сине-зелёные, 2) Красные, 3) Пирофитовые, 4) Золотистые, 5) Диатомовые, 6) Желто-зелёные, 7) Бурые, 8) Эвгленовые, 9) Зеленые и 10) Харовые. Первый отдел относится к царству Прокариот, остальные - к царству Растений.

Отдел Сине-зёлёные водоросли, или Цианобактерии (Cyanophyta)

Насчитывается около 2 тысяч видов, объединяемых примерно в 150 родов. Это древнейшие организмы, следы существования которых найдены в докембрийских отложениях, возраст их около 3 млрд. лет.

Среди сине-зелёных водорослей есть одноклеточные формы, но большинство видов являются колониальными и нитчатыми организмами. Они отличаются от других водорослей тем, что в их клетках нет оформленного ядра. У них отсутствуют митохондрии, вакуоли с клеточным соком, нет оформленных пластид, а пигменты, с помощью которых осуществляется фотосинтез, находятся в фотосинтетических пластинах - ламеллах. Пигменты сине-зелёных водорослей очень разнообразны: хлорофилла, каротины, ксантофиллы, а также специфические пигменты из группы фикобилинов - синий фикоцианин и красный фикоэритрин, встречающиеся помимо цианобактерий только у красных водорослей. Окраска этих организмов чаще всего сине-зеленая. Однако в зависимости от количественного соотношения различных пигментов окраска этих водорослей может быть не только сине-зеленой, но также фиолетовой, красноватой, желтой, бледно-голубой или почти черной.

Сине-зелёные водоросли распространены по всему земному шару и встречаются в самых разнообразных условиях. Они способны существовать даже в крайних условиях обитания. Эти организмы выносят продолжительное затемнение и анаэробиоз, могут жить в пещерах, в разных почвах, в богатых сероводородом слоях природного ила, в.термальных водах и др.

Вокруг клеток колониальных и нитчатых водорослей образуются слизистые влагалища, которые служат защитной обверткой, предохраняющей клетки от высыхания и являющейся светофильтром.

Многие нитчатые сине-зелёные водоросли имеют своеобразные клетки - гетероцисты. У этих клеток хорошо выражена двуслойная оболочка, и выглядят они пустыми. Но это живые клетки, заполненные прозрачным содержимым. Сине-зелёные водоросли, имеющие гетероцисты, способны фиксировать атмосферный азот. Некоторые виды сине-зелёных водорослей являются компонентами лишайников. Они могут находиться в качестве симбионтов в тканях и органах высших растений. Их способность к фиксации атмосферного азота используется высшими растениями.

Массовое развитие сине-зелёных водорослей в водоемах может иметь отрицательные последствия. Повышенная и загрязнение вод органическими веществами вызывают так называемое «цветение воды». Это делает воду непригодной для употребления человеком. Некоторые пресноводные цианобактерии токсичны для человека и животных.

Размножение сине-зелёных водорослей очень примитивно. Одноклеточные и многие колониальные формы размножаются только делением клеток пополам. Большинство нитчатых форм размножаются гормогониями (это короткие участки, отделившиеся от материнской нити, вырастающие во взрослые особи). Размножение может осуществляться и с помощью спор - разросшихся толстостенных клеток, способных переживать неблагоприятные условия и затем прорастать в новые нити.

Отдел Красные водоросли (или Багрянки) (Rhodophyta)

Красные водоросли () - многочисленная (около 3800 видов из более чем 600 родов) группа в основном морских обитателей. Их размеры варьируются от микроскопических до 1-2 м. Внешне красные водоросли очень разнообразны: есть нитевидные, пластинчатые, кораллоподобные формы, в разной степени рассеченные и разветвленные.

Красные водоросли имеют своеобразный набор пигментов: кроме хлорофилла a и b имеется хлорофилл d, известный только для этой группы растений, есть каротины, ксантофиллы, а также пигменты из группы фикобилинов: синий пигмент - фикоцианин, красный - фикоэритрин. Различное сочетание этих пигментов определяет окраску водорослей - от ярко-красной до голубовато-зеленой и желтой.

Размножаются красные водоросли вегетативным, бесполым и половым путем. Вегетативное размножение характерно лишь для наиболее низко организованных багрянок (одноклеточные и колониальные формы). У высокоорганизованных многоклеточных форм оторванные участки таллома погибают. Для бесполого размножения служат различного рода споры.

Половой процесс оогамный. На растении-гаметофите образуются мужские и женские половые клетки (гаметы), лишенные жгутиков. При оплодотворении женские гаметы не выходят в окружающую среду, а остаются на растении; мужские гаметы выбрасываются наружу и пассивно переносятся токами воды.

Диплоидные растения - спорофиты - имеют такой же внешний вид, как и гаметофиты (гаплоидные растения). Это изоморфная смена поколений. На спорофитах формируются органы бесполого размножения.

Многие красные водоросли широко используются человеком, они съедобны и полезны. В пищевой и медицинской промышленности широко используется получаемый из разных видов багрянок (около 30) полисахарид агар.

Отдел Пирофитовые (или Динофитовые) водоросли (Pyrrophyta (Dinophyta))

Отдел насчитывает около 1200 видов из 120 родов, объединяющих эукариотические одноклеточные (в том числе - двужгутиковые), коккоидные и нитчатые формы. Группа совмещает в себе признаки растений и животных: у некоторых видов имеются щупальца, псевдоподии и стрекательные клетки; некоторые имеют характерный для животных тип питания, обеспечивающийся глоткой. У многих имеется стигма, или глазок. Клетки часто покрыты твердой оболочкой. Хроматофоры буроватых и красноватых оттенков, содержат хлорофиллы а и с, а также каротины, ксантофиллы (иногда - фикоцианин и фикоэритрин). В качестве запасных веществ откладывается крахмал, иногда - масло. Жгутиконосные клетки имеют четко выраженные спинную и брюшную стороны. На поверхности клетки и в глотке имеются бороздки.

Размножаются делением в подвижном или неподвижном состоянии (вегетативно), зооспорами и автоспорами. Половое размножение известно у немногих форм; оно проходит в виде слияния изогамет.

Пирофитовые водоросли - обычные обитатели загрязненных водоемов: прудов, отстойников, некоторых водохранилищ и озер. Многие образуют фитопланктон в морях. При неблагоприятных условиях образуют цисты с толстыми целлюлозными оболочками.

Наиболее широко распространен и богат видами род Криптомонада (Cryptomonas).

Отдел Золотистые водоросли (Chrysophyta)

Микроскопические или мелкие (до 2 см длины) организмы золотисто-желтого цвета, обитающие в соленых и пресных водоемах по всему земному шару. Имеются одноклеточные, колониальные и многоклеточные формы. В России известно около 300 видов из 70 родов. Хроматофоры обычно золотисто-желтые или бурые. Они содержат хлорофиллы а и с, а также каротиноиды и фукоксантин. В качестве запасных веществ откладывается хризоламинарин и масло. Некоторые виды гетеротрофны. Большинство форм имеют 1-2 жгутика и в силу этого подвижны. Размножаются преимущественно бесполым путем - делением или зооспорами; половой процесс известен лишь у нескольких видов. Встречаются обычно в чистых пресных водах (кислые воды сфагновых болот), реже - в морях и в почвах. Типичные фитопланктона.

Отдел Диатомовые водоросли (Bacillariophyta (Diatomea))

Диатомовые водоросли (диатомеи) насчитывают около 10 тысяч видов, относящихся примерно к 300 родам. Это микроскопические организмы, обитающие главным образом в водоемах. Диатомовые водоросли - особая группа одноклеточных организмов, отличная от других водорослей. Клетки диатомеи покрыты панцирем из кремнезема. В клетке находятся вакуоли с клеточным соком. В центре расположено ядро. Хроматофоры крупные. Окраска их имеет различные оттенки желто-бурого цвета, так как среди пигментов преобладают каротины и ксантофиллы, имеющие желтые и бурые оттенки, и маскирующие хлорофиллы а и с.

Для панцирей диатомеи характерны геометрическая правильность строения и большое разнообразие очертаний. Панцирь состоит из двух половинок. Большая - эпитека - покрывает меньшую - гипотеку, как крышка покрывает коробку.

Большинство диатомей, имеющих двустороннюю симметрию, способны передвигаться по поверхности субстрата. Движение осуществляется с помощью так называемого шва. Шов представляет собой щель, прорезающую стенку створки. Движение цитоплазмы в щели и трение ее о субстрат обеспечивают перемещение клетки. Клетки диатомей, имеющих радиальную симметрию, не способны к передвижению.

Размножаются диатомеи обычно делением клетки на две половинки. Протопласт увеличивается в объеме, вследствие чего эпитека и гипотека расходятся. Протопласт делится на две равные части, митотически делится ядро. В каждой половинке разделившейся клетки панцирь играет роль эпитеки и достраивает недостающую половинку панциря, всегда гипотеку. В результате многочисленных делений происходит постепенное уменьшение размеров клеток у части популяции. Некоторые клетки примерно в три раза меньше по сравнению с первоначальными. Достигнув минимальных размеров, клетки развивают ауксоспоры («растущие споры»). Образование ауксоспор связано с половым процессом.

Клетки диатомовых водорослей в вегетативном состоянии диплоидны. Перед половым размножением происходит редукционное деление ядра (мейоз). Две клетки диатомей сближаются, створки раздвигаются, гаплоидные (после мейоза) ядра попарно сливаются, и образуются одна или две ауксоспоры. Ауксоспора некоторое время растет, а затем вырабатывает панцирь и превращается в вегетативную особь.

Среди диатомей есть светолюбивые и тенелюбивые виды, они живут в водоемах на разных глубинах. Диатомовые могут обитать и в почвах, особенно влажных и заболоченных. Наряду с другими водорослями диатомеи могут вызывать «цветение» снега.

Диатомеи играют большую роль в экономике природы. Они служат постоянной кормовой базой и первоначальным звеном в пищевых цепях для многих водных организмов. Ими питаются многие рыбы, особенно молодь.

Панцири диатомей, осаждаясь на дно в течение миллионов лет, формируют осадочную геологическую породу - диатомит. Он широко используется как строительный материал с высокими тепло- и звукоизоляционными свойствами, в качестве фильтров в пищевой, химической, медицинской промышленности.

Отдел желто-зеленые водоросли (Xanthophyta)

Эта группа водорослей насчитывает около 550 видов. В основном это обитатели пресных вод, реже встречаются в морях и на влажной почве. Среди них есть одноклеточные и многоклеточные формы, жгутиковые, коккоидные, нитчатые и пластинчатые, а также сифональные организмы. Для этих водорослей характерна желто-зеленая окраска, давшая название всей группе. Хлоропласты дисковидной формы. Характерные пигменты - хлорофиллы а и с, а и Ь каротиноиды, ксантофиллы. Запасные вещества - глюкан, . Половое размножение - оогамное и изогамное. Вегетативно размножаются делением; бесполое размножение осуществляется специализированными подвижными или неподвижными клетками - зоо- и апланоспорами.

Отдел Бурые водоросли (Phaeophyta)

Бурые водоросли - высокоорганизованные многоклеточные организмы, обитающие в морях. Их около 1500 видов из примерно 250 родов. Самые крупные из бурых водорослей достигают нескольких десятков метров (до 60 м) длины. Однако в этой группе встречаются также виды микроскопических размеров. Форма слоевищ может быть очень многообразна.

Общий признак всех водорослей, принадлежащих к этой группе, - желтовато-бурая окраска. Она обусловлена пигментами каротином и ксантофиллом (фукоксантин и др.), которые маскируют зеленый цвет хлорофиллов а и с. Клеточная оболочка целлюлозная с наружным пектиновым слоем, способным к сильному ослизнению.

У бурых водорослей встречаются все формы размножения: вегетативное, бесполое и половое. Вегетативное размножение происходит отделившимися частями слоевища. Бесполое размножение осуществляется при помощи зооспор (подвижных благодаря жгутикам спор). Половой процесс у бурых водорослей представлен изогамией (реже - анизогамия и оогамия).

У многих бурых водорослей гаметофит и спорофит различаются по форме, размерам и строению. У бурых водорослей наблюдается чередование поколений, или смена ядерных фаз в цикле развития. Бурые водоросли встречаются во всех морях земного шара. В зарослях бурых водорослей близ берегов находят укрытие, места размножения и питания многочисленные прибрежные животные. Бурые водоросли широко используются человеком. Из них получают альгинаты (соли альгиновой кислоты), применяемые как стабилизаторы растворов и суспензий в пищевой промышленности. Они используются при изготовлении пластмасс, смазочных материалов и т. д. Некоторые бурые водоросли (ламинарии, аларии и др.) используются в пище.

Отдел Эвгленовые водоросли (Euglenophyta)

В этой группе около 900 видов из примерно 40 родов. Это одноклеточные жгутиковые организмы, в основном обитатели пресных вод. В хлоропластах присутствуют хлорофиллы а и b и большая группа вспомогательных пигментов из группы каротиноидов. У этих водорослей на свету происходит фотосинтез, а в темноте они переходят на гетеротрофное питание.

Размножение этих водорослей происходит только за счет митотического деления клетки. Митоз у них отличается от этого процесса в других группах организмов.

Отдел Зеленые водоросли (Chlorophyta)

Зеленые водоросли - самый крупный отдел Водорослей, насчитывающий, по разным оценкам, от 13 до 20 тысяч видов из примерно 400 родов. Для этих водорослей характерна чисто зеленая, как у высших растений, окраска, так как среди пигментов преобладает хлорофилл. В хлоропластах (хроматофорах) присутствуют две модификации хлорофилла a и b, как и у высших растений, а также другие пигменты - каротины и ксантофиллы.

Жесткие клеточные стенки зеленых водорослей образованы целлюлозой и пектиновыми веществами. Запасные вещества - крахмал, реже масло. Многие особенности строения и жизни зеленых водорослей свидетельствуют об их родстве с высшими растениями. Зеленые водоросли отличаются наибольшим по сравнению с другими отделами многообразием. Они могут быть одноклеточными, колониальными, многоклеточными. В этой группе представлено все разнообразие морфологической дифференциации тела, известной для водорослей, - монадная, коккоидная, пальмеллоидная, нитчатая, пластинчатая, неклеточная (сифональная). Велик диапазон их размеров - от микроскопических одиночных клеток до крупных многоклеточных форм длиной в десятки сантиметров. Размножение вегетативное, бесполое и половое. Встречаются все основные типы смены форм развития.

Зеленые водоросли обитают чаще в пресных водоемах, однако немало солоноводных и морских форм, а также вневодных наземных и почвенных видов.

К классу Вольвоксовых относятся наиболее примитивные представители зеленых водорослей. Обычно это одноклеточные организмы со жгутиками, иногда объединенные в колонии. Они подвижны в течение всей жизни. Распространены в неглубоких пресных водоемах, болотах, в почве. Из одноклеточных широко представлены виды рода хламидомонада. Шаровидные или эллипсоидальные клетки хламидомонад покрыты оболочкой, состоящей из гемицеллюлозы и пектиновых веществ. На переднем конце клетки расположены два жгутика. Всю внутреннюю часть клетки занимает чашевидный хлоропласт. В цитоплазме, заполняющей чашевидный хлоропласт, расположено ядро. У основания жгутиков имеются две пульсирующие вакуоли.

Бесполое размножение происходит при помощи двужгутиковых зооспор. При половом размножении в клетках хламидомонад формируются (после мейоза) двужгутиковые гаметы.

Для видов хламидомонад характерна изо-, гетеро- и оогамия. При наступлении неблагоприятных условий (пересыхание водоема) клетки хламидомонад теряют жгутики, покрываются слизистым чехлом и размножаются делением. При наступлении благоприятных условий они образуют жгутики и переходят к подвижному образу жизни.

Наряду с автотрофным способом питания (фотосинтез) клетки хламидомонад способны всасывать через оболочку растворенные в воде органические вещества, что способствует процессам самоочищения загрязненных вод.

Клетки колониальных форм (пандорина, вольвокс) построены по типу хламидомонад.

В классе Протококковых основная форма вегетативного тела - неподвижные клетки с плотной оболочкой и колонии таких клеток. Примерами одноклеточных протококковых могут служить хлорококк и хлорелла. Бесполое размножение хлорококка осуществляется с помощью двужгутиковых подвижных зооспор, а половой процесс представляет собой слияние подвижных двужгутиковых изогамет (изогамия). У хлореллы отсутствуют подвижные стадии при бесполом размножении, половой процесс отсутствует.

Класс Улотриксовые объединяет нитчатые и пластинчатые формы, обитающие в пресных и морских водоемах. Улотрикс представляет собой нить до 10 см длиной, прикрепляющуюся к подводным предметам. Клетки нити одинаковые, короткоцилиндрические с пластинчатыми постенными хлоропластами (хроматофорами). Бесполое размножение осуществляется зооспорами (подвижные клетки с четырьмя жгутиками).

Половой процесс изогамный. Гаметы подвижны благодаря наличию у каждой гаметы двух жгутиков.

Класс Конъюгаты (сцеплянки) объединяет одноклеточные и нитчатые формы со своеобразным типом полового процесса - конъюгацией. Хлоропласты (хроматофоры) в клетках этих водорослей пластинчатого типа и очень разнообразны по форме. В прудах и в водоемах с медленным течением основную массу зеленой тины образуют нитчатые формы (спирогира, зигнема и др.).

При конъюгации от супротивных клеток двух расположенных рядом нитей вырастают отростки, которые образуют канал. Содержимое двух клеток сливается, и образуется зигота, покрывающаяся толстой оболочкой. После периода покоя зигота прорастает, давая начало новым нитчатым организмам.

Класс Сифоновые включает водоросли с неклеточным строением слоевища (таллома) при его довольно крупных размерах и сложном расчленении. Морская сифоновая водоросль каулерпа внешне напоминает листостебельное растение: размер ее около 0,5 м, к грунту она прикрепляется ризоидами, ее слоевища стелятся по грунту, а вертикальные образования, напоминающие листья, содержат хлоропласты. Она легко размножается вегетативно частями слоевища. В теле водоросли отсутствуют клеточные стенки, у нее сплошная протоплазма с многочисленными ядрами, близ стенок расположены хлоропласты.

Отдел Харовые водоросли (Charophyta)

Это наиболее сложно устроенные водоросли: их тело дифференцировано на узлы и междоузлия, в узлах - мутовки коротких ветвей, напоминающих листья. Размер растений от 20-30 см до 1-2 м. Они образуют сплошные заросли в пресных или слабосоленых водоемах, прикрепляясь к грунту ризоидами. Внешне они напоминают высшие растения. Однако настоящего расчленения на корень, стебель и листья у этих водорослей нет. Харовых водорослей насчитывается около 300 видов, принадлежащих к 7 родам. У них есть сходство с зелеными водорослями по составу пигментов, строению клеток, особенностям размножения. Есть сходство и с высшими растениями в особенностях размножения (оогамия) и т. д. Отмеченное сходство свидетельствует о наличии общего предка у харовых и высших растений.

Вегетативное размножение харовых осуществляется специальными структурами, так называемыми клубеньками, образующимися на ризоидах и на нижних частях стеблей. Каждый из клубеньков легко прорастает, образуя протонему, а затем и целое растение.

Весь отдел водорослей после первого с ним знакомства охватить мысленно и дать каждому отделу его правильное место в системе очень трудно. Система водорослей выработалась в науке не скоро и лишь после многих неудачных попыток. В настоящее время мы предъявляем ко всякой системе то основное требование, чтобы она была филогенетической. Сначала думали, что такая система может быть очень простой; представляли ее себе в виде одного родословного дерева, хотя бы и со многими боковыми ветвями. Теперь же мы строим ее не иначе, как в виде многих родословных линий, развивавшихся параллельно. Дело осложняется еще и тем, что на ряду с прогрессивными изменениями наблюдаются и регрессивные, ставящие на разрешение трудную задачу - при отсутствии того или другого признака или органа решить, что он - еще не появился или уже исчез?

Наиболее совершенной считалась долго система, данная Вилле в 236 выпуске основного сочинения по описательной систематике растений, выходящего под редакцией А. Энглера. Основной группой здесь признаются жгутиковые организмы или Flagellata.

Схема эта обнимает только основную группу зеленых водорослей. Для остальных возьмем схему Розена, изменив только названия групп, сообразно принятым выше при их описании.