Содержание воды в различных клетках. Распределение воды в клетке и в организме. Водный баланс растений. Изучение нового материала


Содержание воды в различных органах растений колеблется в довольно широких пределах. Оно изменяется в зависимости от условий внешней среды, возраста и вида растений. Так, содержание воды в листьях салата составляет 93-95%, кукурузы - 75-77%. Количество воды неодинаково в разных органах растений: в листьях подсолнечника воды содержится 80-83%, в стеблях - 87-89%, в корнях - 73-75%. Содержание воды, равное 6-11%, характерно главным образом для воздушно-сухих семян, в которых процессы жизнедеятельности заторможены.

Вода содержится в живых клетках, в мертвых элементах ксилемы и в межклетниках. В межклетниках вода находится в парообразном состоянии. Основными испаряющими органами растения являются листья. В связи с этим естественно, что наибольшее количество воды заполняет межклетники листьев. В жидком состоянии вода находится в различных частях клетки: клеточной оболочке, вакуоли, протоплазме. Вакуоли - наиболее богатая водой часть клетки, где содержание ее достигает 98%. При наибольшей оводненности содержание воды в протоплазме составляет 95%. Наименьшее содержание воды характерно для клеточных оболочек. Количественное определение содержания воды в клеточных оболочках затруднено; по-видимому, оно колеблется от 30 до 50%.

Формы воды в разных частях растительной клетки также различны. В вакуолярном клеточном соке преобладает вода, удерживаемая сравнительно низкомолекулярными соединениями (осмотически-связанная) и свободная вода. В оболочке растительной клетки вода связана главным образом высокополимерными соединениями (целлюлозой, гемицеллюлозой, пектиновыми веществами), т. е. коллоидно-связанная вода. В самой цитоплазме имеется вода свободная, коллоидно- и осмотически-связанная. Вода, находящаяся на расстоянии до 1 нм от поверхности белковой молекулы, связана прочно и не имеет правильной гексагональной структуры (коллоидно-связанная вода). Кроме того, в протоплазме имеется определенное количество ионов, а следовательно, часть воды осмотически связана.

Физиологическое значение свободной и связанной воды различно. Большинство исследователей полагает, что интенсивность физиологических процессов, в том числе и темпов роста, зависит в первую очередь от содержания свободной воды. Имеется прямая корреляция между содержанием связанной воды и устойчивостью растений против неблагоприятных внешних условий. Указанные физиологические корреляции наблюдаются не всегда.

Растительная клетка поглощает воду по законам осмоса. Осмос наблюдается при наличии двух систем с различной концентрацией веществ, когда они сообщаются с помощью полупроницаемой мембраны. В этом случае по законам термодинамики выравнивание концентраций происходит за счет вещества, для которого мембрана проницаема.

При рассмотрении двух систем с различной концентрацией осмотически активных веществ следует, что выравнивание концентраций в системе 1 и 2 возможно только за счет перемещение воды. В системе 1 концентрация воды выше, поэтому поток воды направлен от системы 1 к системе 2. По достижении равновесия реальный поток будет равен нулю.

Растительную клетку можно рассматривать как осмотическую систему. Клеточная стенка, окружающая клетку, обладает определенной эластичностью и может растягиваться. В вакуоли накапливаются растворимые в воде вещества (сахара, органические кислоты, соли), которые обладают осмотической активностью. Тонопласт и плазмалемма выполняют в данной системе функцию полупроницаемой мембраны, поскольку эти структуры избирательно проницаемы, и вода проходит через них значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме. В связи с этим, если клетка попадает в окружающую среду, где концентрация осмотически активных веществ будет меньше по сравнению с концентрацией внутри клетки (или клетка помещена в воду), вода по законам осмоса должна поступать внутрь клетки.

Возможность молекул воды перемещаться из одного места в другое измеряется водным потенциалом (Ψв). По законам термодинамики вода всегда движется из области с более высоким водным потенциалом в область с более низким потенциалом.

Водный потенциал (Ψ в) – показатель термодинамического состояния воды. Молекулы воды обладают кинетической энергией, в жидкости и водяном паре они беспорядочно движутся. Водный потенциал больше в той системе, где выше концентрация молекул и больше их общая кинетическая энергия. Максимальным водным потенциалом обладает чистая (дистиллированная) вода. Водный потенциал такой системы условно принят за нуль.

Единицей измерения водного потенциала являются единицы давления: атмосферы, паскали, бары:

1 Па = 1 Н/м 2 (Н- ньютон) ; 1 бар=0,987 атм =10 5 Па=100 кПА;

1 атм =1,0132 бар; 1000 кПа = 1 МПа

При растворении в воде другого вещества, понижается концентрация воды, уменьшается кинетическая энергия молекул воды, снижается водный потенциал. Во всех растворах водный потенциал ниже, чем у чистый воды, т.е. в стандартных условиях он выражается отрицательной величиной. Количественно это понижение выражают величиной, которая называется осмотическим потенциалом (Ψ осм.). Осмотический потенциал – это мера снижения водного потенциала за счет присутствия растворенных веществ. Чем больше в растворе молекул растворенного вещества, тем осмотический потенциал ниже.

При поступлении воды в клетку ее размеры увеличиваются, внутри клетки повышается гидростатическое давление, которое заставляет плазмалемму прижиматься к клеточной стенке. Клеточная оболочка, в свою очередь, оказывает противодавление, которое характеризуется потенциалом давления (Ψ давл.) или гидростатическим потенциалом, он обычно положителен и тем больше, чем больше воды в клетке.

Таким образом, водный потенциал клетки зависит от концентрации осмотически действующих веществ – осмотического потенциала (Ψ осм.) и от потенциала давления (Ψ давл.).

При условии, когда вода не давит на клеточную оболочку (состояние плазмолиза или увядания), противодавление клеточной оболочки равно нулю, водный потенциал равен осмотическому:

Ψ в. = Ψ осм.

По мере поступления воды в клетку появляется противодавление клеточной оболочки, водный потенциал будет равен разности между осмотическим потенциалом и потенциалом давления:

Ψ в. = Ψ осм. + Ψ давл.

Разница между осмотическим потенциалом клеточного сока и противодавлением клеточной оболочки определяет поступление воды в каждый данный момент.

При условии, когда клеточная оболочка растягивается до предела, осмотический потенциал целиком уравновешивается противодавлением клеточной оболочки, водный потенциал становиться равным нулю, вода в клетку перестает поступать:

- Ψ осм. = Ψ давл. , Ψ в. = 0

Вода всегда поступает в сторону более отрицательного водного потенциала: от той системы, где энергия больше, к той системе, где энергия меньше.

Вода в клетку может поступать также за счет сил набухания. Белки и другие вещества, входящие в состав клетки, имея положительно и отрицательно заряженные группы, притягивают диполи воды. К набуханию способны клеточная стенка, имеющая в своем составе гемицеллюлозы и пектиновые вещества, цитоплазма, в которой высокомолекулярные полярные соединения составляют около 80% сухой массы. Вода проникает в набухающую структуру путем диффузии, движение воды идет по градиенту концентрации. Силу набухания обозначают термином матричный потенциал (Ψ матр.). Он зависит от наличия высокомолекулярных компонентов клетки. Матричный потенциал всегда отрицательный. Большое значение Ψ матр. имеет при поглощении воды структурами, в которых отсутствуют вакуоли (семенами, клетками меристем).



Жизнедеятельность клеток, тканей и органов растений обусловлена ​​наличием воды. Вода является конституционной веществом. Определяя структуру цитоплазмы клеток и ее органелл, благодаря полярности молекул она является растворителем органических и неорганических соединений, участвующих в обмене веществ, и выступает фоновым средой, в которой происходят все биохимические процессы. Легко проникая через оболочки и мембраны клеток, вода свободно циркулирует по всему растению, обеспечивая перенос веществ и тем способствуя единства метаболических процессов организма. Благодаря высокой прозрачности, вода не препятствует поглощению солнечной энергии хлорофиллом.

Состояние воды в клетках растений

Вода в клетке представлена ​​в нескольких формах, принципиально отличаются. Основными из них являются конституционное, сольватная, капиллярная и резервная вода.

Часть молекул воды, входящих в клетку, образует водородные связи с рядом радикалов молекул органических веществ. Особенно легко водородные связи образуют такие радикалы:

Эту форму воды принято называть конституционной . Она содержится клеткой с силой до 90 тыс. Барр.

Благодаря тому, что молекулы воды является диполями, они образуют с заряженными молекулами органических веществ цельные агрегаты. Такая вода, связанная с молекулами органических веществ цитоплазмы силами электрического притяжения, получила название сольватной . В зависимости от типа растительной клетки на долю сольватной воды приходится от 4 до 50% ее общего количества. Сольватная вода подобно конституционной не имеет подвижности и не является растворителем.

Значительная часть воды клетки является капиллярной , поскольку она размещается в полостях между макромолекулами. Сольватная и капиллярная вода удерживается клеткой с силой, которую называют матричным потенциалом. Он равен 15-150 бар.

Резервной называют воду, находящуюся внутри вакуолей. Содержание вакуолей собой раствор сахаров, солей и ряда других веществ. Поэтому резервная вода удерживается клеткой с силой, которая определяется величиной осмотического потенциала вакуолярного содержания.

Поглощение воды клетками растений

Поскольку для молекул воды в клетках нет активных переносчиков, то ее перемещение в клетки и из клеток, а также между соседними клетками осуществляется только по законам диффузии. Поэтому градиенты концентрации растворенных веществ оказываются основными двигателями для молекул воды.

Растительные клетки в зависимости от их возраста и состояния поглощают воду, используя последовательное включение трех механизмов: имбибиция, сольватации и осмоса.

Имбибиция . При прорастании семян начинает поглощать воду благодаря механизму имбибиция. При этом заполняются вакантные водородные связи органических веществ протопласта, и вода активно поступает из окружающей среды в клетку. По сравнению с другими силами, действующими в клетках, имбибицийни силы колоссальные. Для некоторых водородных связей они достигают величины 90 тыс. Барр. При этом семена могут набухать и прорастать в сравнительно сухих почвах. После заполнения всех вакантных водородных связей имбибиция останавливается и включается следующий механизм поглощения воды.

Сольватация . В процессе сольватации поглощения воды происходит путем построения гидратационных слоев вокруг молекул органических веществ протопласта. Общая обводненность клетки продолжает повышаться. Интенсивность сольватации существенно зависит от химического состава протопласта. Чем больше в клетке гидрофильных веществ, тем полнее используются силы сольватации. Гидрофильность уменьшается в ряду: белки -> углеводы -> жиры. Поэтому наибольшее количество воды на единицу веса путем сольватации поглощает белковое семена (горох, бобы, фасоль), промежуточную - крохмалисте (пшеница, рожь), а наименьшую - масличные (лен, подсолнечник).

Силы сольватации уступают по мощности силам имбибиция, но они все равно довольно значительные и достигают 100 бар. К концу процесса сольватации обводненность клетки настолько велика, что утворюется капиллярная влага, начинают возникать вакуоли. Однако с момента их образования сольватация прекращается, и дальнейшее поглощение воды возможно только за счет осмотического механизма.

Осмос . Осмотическое механизм поглощения воды действует только в клетках, которые имеют вакуоль. Направление движения воды при этом определяется соотношением осмотических потенциалов растворов, входящих в осмотическую систему.

Осмотическое потенциал клеточного сока, обозначается через Р, определяется по формуле:

Р = iRcT,

где Р - осмотическое потенциал клеточного сока

R - газовая постоянная, равная 0,0821;

Т - температура по шкале Кельвина;

i - изотонический коэффициент, указывающий на характер электролитической диссоциации растворенных веществ.

Изотонический коэффициент сам по себе равна

и = 1 + α (n + 1),

где α - степень электролитической диссоциации;

п - количество ионов, на которые диссоциирует молекула. Для неелектролитов п = 1.

Осмотическое потенциал почвенного раствора обычно обозначают греческой буквой π.

Молекулы воды всегда перемещаются из среды с меньшим осмотическим потенциалом в среду с большим осмотическим потенциалом. Итак, если клетка находится в почвенном (внешнем) растворе при Р> π, то вода поступает в клетки. Поступление воды в клетку прекращается при полном выравнивании осмотических потенциалов (вакуолярной сок входе поглощения воды разбавляется) или при достижения клеточной оболочкой пределы растяжимости.

Таким образом, клетки получают воду из окружающей среды только при одном условии: осмотическое потенциал клеточного сока должен быть выше, чем осмотическое потенциал окружающего раствора.

В случае если Р < π, имеет место отток воды из клетки во внешней раствор. В ходе водоотдачей объем протопласта постепенно зменьшуется, он отходит от оболочки, и в клетке возникают небольшие полости. Такое состояние называют Плазмолиз . Этапы плазмолизу показаны на рис. 3.18.

В случае если соотношение осмотических потенциалов соответствует условию Р = π, диффузии молекул воды вообще не происходит.

Большой фактический материал свидетельствует, что осмотическое потенциал клеточного сока растений колеблется в довольно широких пределах. В сельскохозяйственных растений в клетках корней он обычно лежит в амплитуде 5-10 бар, в клетках листьев может подниматься до 40 бар, а в клетках плодов - до 50 бар. У растений солончаков осмотическое потенциал клеточного сока достигает 100 бар.

Рис. 3.18.

А - клетка в состоянии тургора; Б - угловой; В - вогнутый; Г - выпуклый; Д - судорожный; Е - колпачковый. 1 - оболочка; 2 - вакуоль; 3 - цитоплазма; 4 - ядро; 5 - нити Гехта

Вода – самое распространенное соединение на Земле и в живых организмах. Содержание воды в клетках зависит от характера обменных процессов: чем они интенсивнее, тем выше содержание воды.

В среднем в клетках взрослого человека содержится 60-70% воды. При потере 20% воды организмы гибнут. Без воды человек может прожить не более 7 дней, тогда как без пищи не более 40 дней.

Рис. 4.1. Пространственная структура молекулы воды (Н 2 О) и образование водородной связи

Молекула воды (Н 2 О) состоит из двух атомов водорода, которые ковалентно связаны с атомам кислорода. Молекула полярная, потому что она изогнута под углом и ядро атома кислорода оттягивает обобществленные электроны к этому углу, так что кислород приобретает частичный отрицательный заряд, а находящиеся на открытых концах атомы водорода – частично положительные заряды. Молекулы воды способны притягиваться одна к другой положительным и отрицательным зарядом, образуя водородную связь (рис.4.1.).

Благодаря уникальной структуре молекул воды и их способности связываться друг с другом при помощи водородных связей вода обладает рядом свойств определяющих ее важную роль в клетке и организме.

Водородные связи обуславливают относительно высокие температуры кипения и испарения, высокую теплоемкость и теплопроводность воды, свойство универсального растворителя.

Водородные связи слабее ковалентных в 15-20 раз. В жидком состоянии водородные связи то образуются то разрываются, что обуславливает движение молекул воды, ее текучесть.

Биологическая роль Н 2 О

Вода определяет физические свойства клетки – ее объем, упругость (тургор). В клетке содержится 95-96 % свободной воды и 4-5% связанной. Связанная вода образует водные (сольватные) оболочки вокруг определенных соединений (например, белков), препятствуя их взаимодействию между собой.

Свободная вода является хорошим растворителем для многих неорганических и органических полярных веществ. Вещества хорошо растворимые в воде называются гидрофильными . Например, спирты, кислоты, газы, большинство солей Натрия, Калия и др. Для гидрофильных веществ энергия связи между их атомами меньше, чем энергия притяжения этих атомов к молекулам воды. Поэтому их молекулы или ионы легко встраиваются в общую систему водородных связей воды.

Вода как универсальный растворитель играет чрезвычайно важную роль, поскольку большинство химических реакций происходит в водных растворах. Проникновение веществ в клетку и выведение из нее продуктов жизнедеятельности в большинстве случаев возможно только в растворенном виде.

Неполярные (не несущие заряда) вещества вода не растворяет, поскольку не может образовать с ними водородные связи. Нерастворимые в воде вещества называются гидрофобными . К ним относятся жиры, жироподобные вещества, полисахариды, каучук.

Некоторые органические молекулы имеют двойные свойства: на одних участках их расположены полярные группы, а на других – неполярные. Такие вещества называют амфипатическими, или амфифильними . К ним относятся белки, жирные кислоты, фосфолипиды, нуклеиновые кислоты. Амфифильные соединения играют важную роль в организации биологических мембран, комплексных надмолекулярных структур.

Вода принимает непосредственное участие в реакциях гидролиза – расщепления органических соединений. При этом под действием специальных ферментов к свободным валентностям органических молекул присоединяются ионы ОН - и Н + воды. В результате образуют новые вещества с новыми свойствами.

Вода обладает большой теплоемкостью (т.е. способностью поглощать тепло при незначительных изменениях собственной температуры) и хорошей теплопроводностью. Благодаря этим свойствам температура внутри клетки (и организма) поддерживается на определенном уровне при значительных перепадах температуры окружающей среды.

Важное биологическое значение для функционирования растений, холоднокровных животных имеет то, что под влиянием растворенных веществ (углеводов, глицерина) вода может изменять свои свойства, в частности температуру замерзания и кипения.

Свойства воды настолько важны для живых организмов, что нельзя представить существование жизни, в том виде как мы ее знаем, не только на Земле, но и на любой другой планете без достаточного запаса воды.

МИНЕРАЛЬНЫЕ СОЛИ

Могут пребывать в растворенном или нерастворенном состоянии. Молекулы минеральных солей в водном растворе распадаются на катионы и анионы.

Свойства воды и ее роль в клетке:

На первом месте среди веществ клетки стоит вода. Она составляет около 80% массы клетки. Вода важна для живых организмов вдвойне, ибо она необходима не только как компонент клеток, но для многих и как среда обитания.

1. Вода определяет физические свойства клетки - ее объем, упругость.

2. Многие химические процессы протекают только в водном растворе.

3. Вода - хороший растворитель: многие вещества поступают в клетку из внешней среды в водном растворе, и в водном же растворе отработанные продукты выводятся из клетки.

4. Вода обладает высокой теплоемкостью и теплопроводностью.

5. Вода обладает уникальным свойством: при охлаждении ее от +4 до 0 градусов, она расширяется. Поэтому лед оказывается легче жидкой воды и остается на ее поверхности. Это очень важно для организмов, обитающих в водной среде.

6. Вода может быть хорошим смазочным материалом.

Биологическая роль воды определяется малыми размерами ее молекул, их полярностью и способностью соединяться друг с другом водородными связями.

Биологические функции воды:

транспортная. Вода обеспечивает передвижение веществ в клетке и организме, поглощение веществ и выведение продуктов метаболизма. В природе вода переносит продукты жизнедеятельности в почвы и к водоемам.

метаболическая. Вода является средой для всех биохимических реакций, донором электронов при фотосинтезе; она необходима для гидролиза макромолекул до их мономеров.

вода участвует в образовании смазывающих жидкостей и слизей, секретов и соков в организме.

За очень немногими исключениями (кость и эмаль зуба), вода является преобладающим компонентом клетки. Вода необходима для метаболизма (обмена) клетки, так как физиологические процессы происходят исключительно в водной среде. Молекулы воды участвуют во многих ферментативных реакциях клетки. Например, расщепление белков, углеводов и других веществ происходит в результате катализируемого ферментами взаимодействия их с водой. Такие реакции называются реакциями гидролиза.

Вода служит источником ионов водорода при фотосинтезе. Вода в клетке находится в двух формах: свободной и связанной. Свободная вода составляет 95% всей воды в клетке и используется главным образом как растворитель и как дисперсионная среда коллоидной системы протоплазмы. Связанная вода, на долю которой приходится всего 4% всей воды клетки, непрочно соединена с белками водородными связями.

Из-за асимметричного распределения зарядов молекула воды действует как диполь и потому может быть связана как положительно, так и отрицательно заряженными группами белка. Дипольным свойством молекулы воды объясняется способность ее ориентироваться в электрическом поле, присоединяться к различным молекулам и участкам молекул, несущим заряд. В результате этого образуются гидраты

Благодаря своей высокой теплоемкости вода поглощает тепло и тем самым предотвращает резкие колебания температуры в клетке. Содержание воды в организме зависит от его возраста и метаболической активности. Оно наиболее высоко в эмбрионе (90%) и с возрастом постепенно уменьшается. Содержание воды в различных тканях варьируется в зависимости от их метаболической активности. Например, в сером веществе мозга воды до 80%, а в костях до 20%. Вода - основное средство перемещения веществ в организме (ток крови, лимфы, восходящие и нисходящие токи растворов по сосудам у растений) и в клетке. Вода служит «смазочным» материалом, необходимым везде, где есть трущиеся поверхности (например, в суставах). Вода имеет максимальную плотность при 4°С. Поэтому лед, обладающий меньшей плотностью, легче воды и плавает на ее поверхности, что защищает водоем от промерзания. Это свойство воды спасает жизнь многим водным организмам.