Что обозначает формула h2o. H2O2 - что это за вещество? Химические свойства и методы получения

Вода - уникальнейшее вещество, основа всех живых организмов на планете. Она может приобретать различную форму и находиться в трех состояниях. Какие основные физические и химические свойства воды? Именно о них пойдет речь в нашей статье.

Вода - это...

Вода - это самое распространенное на нашей планете неорганическое соединение. Физические и химические свойства воды определяются составом её молекул.

Так, в структуре молекулы воды содержится два атома водорода (Н) и один атом кислорода (О). В нормальных условиях внешней среды это безвкусная жидкость без запаха и окраса. Вода также может находиться в других состояниях: в виде пара или же в форме льда.

Более 70 % нашей планеты покрыто именно водой. Причем около 97 % приходится на моря и океаны, поэтому большая её часть не годится для употребления человеком. О том, каковы основные химические свойства питьевой воды - вы узнаете далее.

Вода в природе и жизни человека

Вода - обязательный компонент любого живого организма. В частности, человеческий организм, как известно, более чем на 70 % состоит именно из воды. Более того, ученые предполагают, что именно в этой среде зародилась жизнь на Земле.

Вода содержится (в форме водяного пара или капель) в разных слоях атмосферы. На поверхность земли из атмосферы она попадает в виде дождя или других осадков (снега, росы, града, инея) посредством процессов конденсации.

Вода выступает объектом исследований для целого ряда научных дисциплин. Среди них - гидрология, гидрография, гидрогеология, лимнология, гляциология, океанология и другие. Все эти науки, так или иначе, изучают физические, а также химические свойства воды.

Вода активно используется человеком в его хозяйственной деятельности, в частности:

  • для выращивания сельскохозяйственных культур;
  • в промышленности (в качестве растворителя);
  • в энергетике (в качестве теплоносителя);
  • для тушения пожаров;
  • в кулинарии;
  • в фармации и так далее.

Разумеется, чтобы эффективно использовать это вещество в хозяйственной деятельности, следует детально изучить химические свойства воды.

Разновидности воды

Как уже упоминалось выше, вода в природе может находиться в трех состояниях: жидком (собственно, вода), твердом (кристаллы льда) и газообразном (пар). Она также может приобретать любые формы.

Существует несколько видов воды. Так, в зависимости от содержания катионов Са и Na, вода может быть:

  • жесткая;
  • мягкая.
  • пресная;
  • минеральная;
  • солоноватая.

В эзотерике и некоторых религиях бывает вода:

  • мертвая;
  • живая;
  • святая.

В химии также существуют такие понятия, как дистиллированная и деионизированная вода.

Формула воды и её биологическое значение

Оксид водорода - так именуют данное вещество химики. Формула воды следующая: H 2 O. Она означает, что это соединение состоит из одного атома кислорода и двух атомов водорода.

Уникальные химические свойства воды определили её исключительную роль для жизни живых организмов. Именно благодаря воде биологическая жизнь существует на нашей планете.

Самая уникальная особенность воды заключается в том, что она прекрасно растворяет в себе огромное количество других веществ (как органического, так и неорганического происхождения). Важное последствие этой особенности состоит в том, что все химические реакции в живых организмах протекают достаточно быстро.

Кроме этого, благодаря уникальным свойствам воды, она пребывает именно в жидком состоянии, при крайне широком температурном диапазоне.

Физические свойства воды

Благодаря уникальным водородным связям, вода, при стандартных условиях среды, находится в жидком состоянии. Этим объясняется крайне высокая температура кипения воды. Если бы молекулы вещества не были связаны этими водородными связями, то вода закипала бы при +80 градусах, а замерзала - аж при -100 градусах.

Вода закипает при +100 градусах по Цельсию, а замерзает - при нуле градусов. Правда, при определенных, специфических условиях она может начать замерзать и при плюсовых значениях температуры. При замерзании вода увеличивается в своем объеме (за счет уменьшения плотности). Кстати, это чуть ли не единственное вещество в природе, обладающее подобным физическим свойством. Помимо воды, при замерзании расширяется лишь висмут, сурьма, германий и галлий.

Вещество также характеризуется высокой вязкостью, а также довольно сильным поверхностным натяжением. Вода - отличный растворитель для полярных веществ. Также следует знать, что вода очень хорошо проводит через себя электричество. Эта особенность объясняется тем, что в воде почти всегда находится большое количество ионов растворенных в ней солей.

Химические свойства воды (8 класс)

Молекулы воды имеют крайне высокую полярность. Поэтому это вещество в реальности состоит не только из простых молекул вида H 2 O, но и из сложных агрегатов (формула - (H 2 O) n).

В химическом плане вода очень активна, она вступает в реакции со многими другими веществами, даже при обычных температурах. При взаимодействии с оксидами щелочных, а также щелочноземельных металлов, она образует основания.

Вода также способна растворять в себе широкий спектр химических веществ - соли, кислоты, основания, некоторые газы. За это свойство её часто называют универсальным растворителем. Все вещества, в зависимости от того, растворяются они в воде или нет, принято делить на две группы:

  • гидрофильные (хорошо растворяются в воде) - соли, кислоты, кислород, углекислый газ и т. д.;
  • гидрофобные (плохо растворяются в воде) - жиры и масла.

Вода также вступает в химические реакции и с некоторыми металлами (например, с натрием), а также принимает участие в процессе фотосинтеза растений.

В заключение...

Вода - самое распространенное среди неорганических веществ на нашей планете. Она содержится практически везде: на земной поверхности и в её недрах, в мантии и в горных породах, в высоких слоях атмосферы и даже в космосе.

Химические свойства воды определены её химическим составом. Её относят к группе химически активных веществ. Со многими веществами вода вступает в

Другие названия: оксид водорода, дигидрогена монооксид.

Вода - неорганическое соединение с химической формулой H 2 O.

Физические свойства

Химические свойства и методы получения

Вода наивысшей чистоты

Применяемая в лабораториях дистиллированная вода обыкновенно содержит еще заметные количества растворенного диоксида углерода , а также следы аммиака , органических оснований и других органических веществ. Получение очень чистой воды осуществляют в несколько этапов. Сначала в воду на каждый 1 л добавляют 3 г NaOH (ч. д. а.) и 0,5 г KMnO 4 и производят перегонку в аппаратуре на шлифах, изготовленной из стекла типа дюран 50 или солидекс, причем собирают только среднюю фракцию. Таким путем удаляется растворенный диоксид углерода и происходит окисление органических веществ. Удаление аммиака достигается при проведении второй и третьей перегонки с добавлением 3 г KHSO 4 или 5 мл 20%-ной H 3 PO 4 , причем эти реагенты предварительно нагревают с небольшим количеством KMnO 4 . Чтобы предотвратить «выползание» добавленного электролита в конденсат, при проведении третьей перегонки создают «сухой участок», для чего отрезок трубки между насадкой на колбу и холодильником нагревают до 150 °C. Последнюю перегонку, служащую для освобождения от следов электролитов, проводят из кварцевой колбы с холодильником из кварца. Верхнюю трубку холодильника, согнутую под прямым углом, вставляют без всякого уплотняющего материала непосредственно в сужение колбы (рис. 1). Во избежание попадания брызг воды целесообразно на пути пара поместить брызгоулавливатель. В качестве приемника служат колбы из кварца, платины, стекла типа дюран 50 или солидекс, которые предварительно обрабатывают водяным паром. Полученная таким способом вода является «чистой по значению рН» (т.е. со значением pH, равным 7,00).

Рис. 1. Способы присоединения колбы к холодильнику при перегонке воды особой чистоты.

а - простое (дешевое) исполнение;
б - с брызгоулавливателем. Чистоту воды определяют путем измерения ее электропроводности, которая непосредственно после перегонки воды должна составлять менее 10 -6 Ом -1 ·см -1 . Испытание на содержание в воде диоксида углерода производят при помощи баритовой воды, а пробу на содержание аммиака - реактивом Несслера . Очень чистую воду хранят в кварцевых или платиновых сосудах. Можно использовать для этого также и колбы из стекла дюран 50 или солидекс, предварительно обработанные паром в течение долгого времени и предназначенные исключительно для этой цели. Такие сосуды лучше всего закрывать пришлифованными колпачками.

Вода, предназначенная для измерения электропроводности

Способ 1. Получение путем перегонки. Необходимую для проведения измерений электропроводности воду наивысшей степени чистоты получают путем особенно тщательной перегонки уже предварительно очень хорошо очищенной воды. Последняя должна при 25°С обладать электропроводностью (χ ), равной 1·10 -6 -2·10 -6 Ом -1 ·см -1 . Ее получают указанным выше методом или же путем двукратной перегонки: а) со смесью перманганата калия и серной кислоты и б) с гидроксидом бария . Для перегонки пользуются колбой из стекла типа дюран 50 или солидекс с присоединенным к ней медным или кварцевым холодильником.

Рис. 2. Конструкция прибора для перегонки воды, предназначенной для измерения электропроводности.

1 - нагревательная обмотка (60 Ом); 2 - колбонагреватель (130 Ом); 3 - переходник на шлифах .


Все части прибора для одноступенчатой перегонки по методу Кортюма (рис. 2) изготовлены из стекла типа дюран 50 или солидекс, за исключением короткого кварцевого холодильника, присоединенного к перегонному прибору на нормальном шлифе. Ведущую к холодильнику согнутую часть нагревают при помощи нагревательного элемента (60 Ом) до температура превышающей 100°С, во избежание увлечения жидкой воды в холодильник. Расположенный ниже обратный холодильник высотой 60 см снабжен спиралью Видмера. К запасной склянке холодильник присоединяется переходными шлифами. Чтобы дистиллат сохранил малую электропроводность в течение долгого времени, переходные шлифы и запасную склянку предварительно необходимо в течение нескольких суток обработать горячей разбавленной кислотой. Воду высокой чистоты (χ =(1-2)·10 -6 Ом -1 ·см -1) перегоняют, пропуская через прибор медленный поток сжатого воздуха из стального баллона со скоростью приблизительно 1 пузырек в секунду. Воздух предварительно очищают, пропуская его через семь промывных склянок, из которых одна наполнена концентрированной серной кислотой , три содержат 50%-ный раствор гидроксида калия и три - «воду для измерения электропроводности» (последние три промывалки должны быть снабжены пористыми стеклянными пластинками). Полученную воду отбирают из запасной склянки путем вытеснения ее очищенным, как указано выше, сжатым воздухом. Нагревание воды в колбе производят при помощи колбонагревателя мощностью 300 Вт. Колбу можно легко наполнить водой или опорожнить при помощи расположенной в середине ее вертикальной трубки. Заполнение колбы проще всего осуществить, прекратив пропускание воздуха и выключив колбонагреватель.

К трехходовому крану в конце холодильника присоединяют сосуд, в котором проводят измерение электропроводности перегнанной воды до тех пор, пока не будет достигнуто желаемое значение χ . После этого воду путем переключения крана направляют в запасной сборник.

Таким путем за 1 ч можно получить 100 мл воды, для которой при 25 °С χ=2·10 -7 Ом -1 ·см -1 . Если перегонку вести очень медленно, то электропроводность полученной воды может достигать значения χ=10 -8 Ом -1 ·см -1 .

Способ 2. Получение путем ионного обмена. В больших количествах «воду для измерения электропроводности» (х от 7·10 -8 до 1,5·10 -7 Ом -1 ·см -1 можно получить путем ионного обмена в аппаратуре, схематически показанной на рис. 3.


Рис. 3. Конструкция установки для: получения воды особой чистоты путем ионного обмена.

1 - ионообменная колонна;
2 - пористый стеклянный фильтр;
3 - ячейка для измерения электропроводности;
4 - сборник;
6 - трубка для поглощения диоксида углерода. Колонку из стекла пирекс (длиной 75 см и диаметром 7,5 см) с пористой стеклянной пластинкой на дне наполняют смесью (750 г), состоящей из одной части амберлита IR 120 (16-50 меш) и двух частей амберлита IRA 400 (20-50 меш). Смолу в колонне накрывают перфорированным полиэтиленовым кружком, плавающим в растворе и служащим для предотвращения взмучивания смолы потоком воды. Через колонну пропускают обычную дистиллированную воду. Как только электропроводность воды, измеряемая в ячейке 3, достигнет достаточно низкого значения, сначала промывают, а за тем наполняют ею сосуд 4. Попадание в воду диоксида углерода нз воздуха предотвращают при помощи двух вставленных в колонну и в приемник хлоркальциевых трубок 5, заполненных гранулированным «карбосорбом» с индикатором.

Предварительную обработку смолы и се регенерацию производят следующим образом. Катионообменник IR 120 несколько раз промывают дистиллированной водой, удаляя мелкие частицы декантацией. Затем на стеклянном пористом фильтре смолу дважды обрабатывают попеременно 1 н. NaOH и 2 н. HCl , промывая после каждой обработки дистиллированной водой до нейтральной реакции. Анионообменник IRA 400 сначала также промывают дистиллированной водой. После декантации смолу на стеклянном пористом фильтре обрабатывают 2 н. NaOH, не содержащим карбонатов (воду для приготовления раствора освобождают от диоксида углерода перегонкой). Обработку ведут до тех пор, пока концентрация ионов хлора в элюате не понизится до минимума. После этого смолу промывают дистиллированной водой до достижения нейтральной реакции в промывных водах.

Перед регенерацией смолы смесь разделяют. В стакан вносят смолу, суспендируют ее в этаноле и добавляют хлороформ, причем аннионообменник собирается в верхнем слое. Смесь разделяют на составные части и проводят раздельную регенерацию.

При пропускании через аппаратуру обычной дистиллированной воды можно без регенерации получить со скоростью 1 л/мин 7000 л «воды для измерения электропроводности» с х=5,52·10 -8 Ом -1 ·см -1 при 25 °С.

Список использованной литературы

  1. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.
  2. M. Баудлер , Г. Брауэр, Ф. Губер, В. Квасник, П.В. Шенк, М. Шмайсер, Р. Штойдель. Руководство по неорганическому синтезу: В 6-ти томах. Т.1. Пер. с. нем./Под ред. Г. Брауэра. - М.: Мир, 1985. - 320 с., ил. [с. 152-156]

Размышления (не учебный материал!!!) на тему

свойств молекулы воды

Самое распространенное вещество на нашей планете. Без нее не было бы жизни. Все живые структуры, за исключением вирусов, по большей части состоят из воды. На ее примере детям в школе объясняют строение молекул, химические формулы. Свойства, характерные только для воды, используются в живой природе, а так же в хозяйственной жизни человека.

С детства нам знакомое вещество, никогда не вызывавшее каких-то вопросов. Ну вода, и что? А в таком простом, казалось бы, веществе скрыто много загадок.

    Вода - основной природный растворитель. Все реакции в живых организмах так или иначе протекают в водной среде, вещества реагируют в растворенном состоянии.

    У воды отличная теплоемкость, но довольно малая теплопроводность. Это позволяет использовать воду как транспорт тепла. На этом принципе основан механизм охлаждения многих организмов. А в атомной энергетике и воду, благодаря этому свойству, используют в качестве теплоносителя.

    В воде не только протекают реакции, она сама вступает в реакции. Гидратация, фотолиз и т. д.

Это только некоторые свойства, ни одно вещество не может похвастаться таким наборов свойств. Поистине это вещество уникально.

Ну а теперь ближе к теме.

Всегда, везде, даже в школе на уроках химии ее называют просто «вода».

А вот какое химическое называние и свойства молекулы воды ?

На просторах интернета и учебной литературы можно встретить такие называния: оксид водорода, гидроксид водорода, гидроксильная кислота. Это самые наиболее часто встречающиеся.

Так к какому все таки классу неорганических веществ относится вода?

Давайте разберемся в этом вопросе.

Ниже приведена схема:

Эта версия более правдоподобна: гидроксильная группа явно намекает на что-то подобное. Но какой гидроксид? Давайте опять разберем по свойствам гидроксиды:

Свойства основных гидроксидов (оснований):

Для растворимых оснований (щелочей):

    Для растворимых оснований (щелочей) характерны реакции ионного обмена.

    Взаимодействие растворимых оснований (щелочей) с кислотными основаниями.

    Взаимодействие с амфотерными гидроксидами.

    Нерастворимые основания разлагаются при нагревании.

    Молекула воды не проявляет ни одного свойства, только разве что, при сильном нагревании, она подвергнется разложению, ну а это со всеми веществами так — есть определенный порог температуры, выше которого связи не могут больше существовать и разрушаются.

Так же аргумент, «против» амфотерного и основного гидроксида — основные и амфотерные гидроксиды образуют только металлы.

Теперь подходим к самой интересной части. Выходит, что вода - это

кислотный гидроксид , то есть кислородосодержащая кислота .

Рассмотрим по свойствам.

Для кислотных гидроксидов характерны:

    Реакции с металлами.

    Реакции с основными и амфотерными оксидами.

    Реакции с основаниями и амфотерными гидроксидам.

    Реакции с солями.

    Для сильных кислот так же реакции ионного обмена.

    Вытеснение более слабых, а так же летучих кислот из солей.

Для молекулы воды характерны почти все эти свойства.

Разберем подробно.

  • Реакции с металлами. Не все металлы способны реагировать с водой. Вода как кислота — очень слабая, но, тем не менее, это свойство она проявляет:

HOH + Na → NaOH + H 2 - из воды вытесняется водород — вода ведет себя, как большинство кислот.

  • Реакции с основными и амфотерными оксидами. С амфотерными оксидами не реагирует, так как кислотные свойства слабые, но реагирует с основными оксидами (не со всеми правда, это объясняется слабыми кислотными свойствами):

HOH + Na 2 O → 2NaOH

  • Реакции с основаниями и амфотерными гидроксидам. Тут вода не может похвастаться такими реакциями — из-за своей слабости как кислоты.
  • Реакции с солями. Некоторые соли подвергаются гидролизу - как раз таки реакции с водой.

Эта реакция так же иллюстрирует последнее свойство - вытеснение кислоты, у воды получается вытеснить сероводород.

Из определения: «кислота - это сложное вещество, состоящее из водорода и кислотного остатка, при диссоциирующее на катион H + и катион кислотного остатка «.

Все подходит. И получается, что кислотный остаток - это гидроксильная группа OH.

И, как я и говорил раньше, вода образует соли, выходит, что соли воды-кислоты - это основные и амфотерные гидроксиды: металл, соединенный с кислотным остатком (OH).

И схемы реакций:

кислота + металл → соль + водород (в общем случае)

HOH + Na → NaOH + H 2

кислота + основный оксид → соль вода

HOH + Na 2 O → 2NaOH (соль образуется, только воды не образуется, да и с чего бы это вдруг в результате реакции с водой, должна образовываться вода)

соль + кислота → другая кислота + другая соль

Al 2 S 3 + HOH → Al(OH) 3 ↓ + H 2 S

Итак, мы пришли к выводу, что амфотерные и основные гидроксиды - это соли воды — кислоты.

Тогда как их называть?

Весть термин «гидроксид» также применим к кислородосодержащим кислотам. По правилам получается:

название иона + ат = Гидрокс + ат.

Соли воды - гидроксаты.

Вода настолько слабая кислота, что проявляет некоторые амфотерные свойства, например реакции с кислотными оксидами.

И в воде нейтральная среда, а не кислая, как во всех кислотах - это исключение из правила.

Но в конце концов, как говорил замечательный русский химик-органик «Неосуществимых реакций нет, а если реакция не идет, то еще не найден катализатор».

Подведем итог.

Сформулируем основные положения теории «Вода - кислота» :

    Молекула воды по свойствам — слабая (очень слабая) кислота.

    Вода настолько слабая, что проявляет амфотерные свойства и у нее нейтральная реакция среды.

    Вода как кислота образует соли - гидроксаты.

    К гидроксатам относятся амфотерные и основные гидроксиды.

    Формула воды: HOH.

    Правильные названия воды: гидроксид водорода, гидроксильная кислота.

ОПРЕДЕЛЕНИЕ

Вода – оксид водорода – бинарное соединение неорганической природы.

Формула – H 2 O. Молярная масса – 18 г/моль. Может существовать в трех агрегатных состояниях – жидком (вода), твердом (лед) и газообразном (водяной пар).

Химические свойства воды

Вода – наиболее распространенный растворитель. В растворе воды существует равновесие, поэтому воду называют амфолитом:

H 2 O ↔ H + + OH — ↔ H 3 O + + OH — .

Под действием электрического тока вода разлагается на водород и кислород:

H 2 O = H 2 + O 2 .

При комнатной температуре вода растворяет активные металлы с образованием щелочей, при этом также происходит выделение водорода:

2H 2 O + 2Na = 2NaOH + H 2 .

Вода способна взаимодействовать с фтором и межгалоидными соединениями, причем во втором случае реакция протекает при пониженных температурах:

2H 2 O + 2F 2 = 4HF + O 2 .

3H 2 O +IF 5 = 5HF + HIO 3 .

Соли, образованные слабым основанием и слабой кислотой, подвергаются гидролизу при растворении в воде:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 ↓ + 3H 2 S.

Вода способна растворять некоторые вещества металлы и неметаллы при нагревании:

4H 2 O + 3Fe = Fe 3 O 4 + 4H 2 ;

H 2 O + C ↔ CO + H 2 .

Вода, в присутствии серной кислоты, вступает в реакции взаимодействия (гидратации) с непредельными углеводородами – алкенами с образованием предельных одноатомных спиртов:

CH 2 = CH 2 + H 2 O → CH 3 -CH 2 -OH.

Физические свойства воды

Вода – прозрачная жидкость (н.у.). Дипольный момент – 1,84 Д (за счет сильного различия электроотрицательностей кислорода и водорода). Вода обладает самым высоким значением удельной теплоемкости среди всех веществ в жидком и твердом агрегатном состояних. Удельная теплота плавления воды – 333,25 кДж/кг (0 С), парообразования – 2250 кДж/кг. Вода способна растворять полярные вещества. Вода обладает высоким поверхностным натяжением и отрицательным электрическим потенциалом поверхности.

Получение воды

Воду получают по реакции нейтрализации, т.е. реакции взаимодействия между кислотами и щелочами:

H 2 SO 4 + 2KOH = K 2 SO 4 + H 2 O;

HNO 3 + NH 4 OH = NH 4 NO 3 + H 2 O;

2CH 3 COOH + Ba(OH) 2 = (CH 3 COO) 2 Ba + H 2 O.

Один из способов получения воды – восстановление металлов водородом из их оксидов:

CuO + H 2 = Cu + H 2 O.

Примеры решения задач

ПРИМЕР 1

Задание Сколько воды надо взять, чтобы из 20%-го раствора уксусной кислоты приготовить 5%-й раствор?
Решение Согласно определению массовой доли вещества 20%-й раствор уксусной кислоты представляет собой 80 мл растворителя (воды) 20 г кислоты, а 5%-й раствор уксусной кислоты представляет собой 95 мл растворителя (воды) 5 г кислоты.

Составим пропорцию:

x = 20 × 95 /5 = 380.

Т.е. в новом растворе (5%-м) содержится 380 мл растворителя. Известно, что первоначальный раствор содержал 80 мл растворителя. Следовательно, чтобы получить 5%-й раствор уксусной кислоты из 20%-го раствора нужно добавить:

380-80 = 300 мл воды.

Ответ Необходимо 300 мл воды.

ПРИМЕР 2

Задание При сгорании органического вещества массой 4,8 г образовалось 3,36л углекислого газа (н.у.) и 5,4 г воды. Плотность органического вещества по водороду равна 16. Определите формулу органического вещества.
Решение Молярные массы углекислого газа и воды, рассчитанные с использованием таблицы химических элементов Д.И. Менделеева – 44 и 18 г/моль, соответственно. Рассчитаем количество вещества продуктов реакции:

n(СО 2) = V(СО 2) / V m ;

n(Н 2 О) = m(Н 2 О) / M(Н 2 О);

n(СО 2) = 3,36 / 22,4 = 0,15 моль;

n(Н 2 О) = 5,4 / 18 = 0,3 моль.

Учитывая, что в составе молекулы СО 2 один атом углерода, а в составе молекулы Н 2 О – 2 атома водорода, количество вещества и массы этих атомов будут равны:

n(С) = 0,15 моль;

n(Н) = 2×0,3 моль;

m(C) = n(С)× M(C) = 0,15 × 12 = 1,8 г;

m(Н) = n(Н)× M(Н) = 0,3 × 1 = 0,3 г.

Определим, есть ли в составе органического вещества кислород:

m(O) = m(C x H y O z) – m(C) – m(H) = 4,8 – 0,6 – 1,8 = 2,4 г.

Количество вещества атомов кислорода:

n(O) = 2,4 / 16 = 0,15 моль.

Тогда, n(C): n(Н): n(O) = 0,15: 0,6: 0,15. Разделим на наименьшее значение, получим n(C):n(Н): n(O) = 1: 4: 1. Следовательно, формула органического вещества CH 4 O. Молярная масса органического вещества рассчитанная с использованием таблицы химических элементов Д.И. Менделеева – 32 г/моль.

Молярная масса органического вещества, рассчитанная с использованием величины его плотности по водороду:

M(C x H y O z) = M(H 2) × D(H 2) = 2 × 16 = 32 г/моль.

Если формулы органического вещества выведенного по продуктам сгорания и с использованием плотности по водороду различаются, то отношение молярных масс будет больше 1. Проверим это:

M(C x H y O z) / M(CH 4 O) = 1.

Следовательно, формула органического вещества CH 4 O.

Ответ Формула органического вещества CH 4 O.

Вода (оксид водорода) - бинарное неорганическое соединение с химической формулой Н 2 O. Молекула воды состоит из двух атомов водорода и одного - кислорода, которые соединены между собой ковалентной связью.

Пероксид водорода.


Физические и химические свойства

Физические и химические свойства воды определяются химическим, электронным и пространственным строением молекул Н 2 O.

Атомы Н и О в молекуле Н 2 0 находятся в своих устойчивых степенях окисления, соответственно +1 и -2; поэтому вода не проявляет ярко выраженных окислительных или восстановительных свойств. Обратите внимание: в гидридах металлов водород находится в степени окисления -1.



Молекула Н 2 O имеет угловое строение. Связи Н-O очень полярны. На атоме О существует избыточный отрицательный заряд, на атомах Н - избыточные положительные заряды. 8 целом молекула Н 2 O является полярной, т.е. диполем. Этим объясняется тот факт, что вода является хорошим растворителем для ионных и полярных веществ.



Наличие избыточных зарядов на атомах Н и О, а также неподеленных электронных пар у атомов О обусловливает образование между молекулами воды водородных связей, вследствие чего они объединяются в ассоциаты. Существованием этих ассоциатов объясняются аномально высокие значения т. пл. и т. кип. воды.

Наряду с образованием водородных связей, результатом взаимного влияния молекул Н 2 O друг на друга является их самоионизация:
в одной молекуле происходит гетеролитический разрыв полярной связи О-Н, и освободившийся протон присоединяется к атому кислорода другой молекулы. Образующийся ион гидроксония Н 3 О + по существу является гидратированным ионом водорода Н + Н 2 O, поэтому упрощенно уравнение самоионизации воды записывается так:


Н 2 O ↔ H + + OH -


Константа диссоциации воды чрезвычайно мала:



Это свидетельствует о том, что вода очень незначительно диссоциирует на ионы, и поэтому концентрация недиссоциированных молекул Н 2 O практически постоянна:




В чистой воде [Н + ] = [ОН - ] = 10 -7 моль/л. Это означает, что вода представляет собой очень слабый амфотерный электролит, не проявляющий в заметной степени ни кислотных, ни основных свойств.
Однако вода оказывает сильное ионизирующее действие на растворенные в ней электролиты. Под действием диполей воды полярные ковалентные связи в молекулах растворенных веществ превращаются в ионные, ионы гидратируются, связи между ними ослабляются, в результате чего происходит электролитическая диссоциация. Например:
HCl + Н 2 O - Н 3 O + + Сl -

(сильный электролит)


(или без учета гидратации: HCl → Н + + Сl -)


CH 3 COOH + H 2 O ↔ CH 3 COO - + H + (слабый электролит)


(или CH 3 COOH ↔ CH 3 COO - + H +)


Согласно теории кислот и оснований Брёнстеда-Лоури, в этих процессах вода проявляет свойства основания (акцептор протонов). По той же теории в роли кислоты (донора протонов) вода выступает в реакциях, например, с аммиаком и аминами:


NH 3 + H 2 O ↔ NH 4 + + OH -


CH 3 NH 2 + H 2 O ↔ CH 3 NH 3 + + OH -

Окислительно-восстановительные реакции с участием воды

I. Реакции, в которых вода играет роль окислителя

Эти реакции возможны только с сильными восстановителями, которые способны восстановить ионы водорода, входящие в состав молекул воды, до свободного водорода.


1) Взаимодействие с металлами


а) При обычных условиях Н 2 О взаимодействует только со щел. и щел.-зем. металлами:


2Na + 2Н + 2 О = 2NaOH + H 0 2


Ca + 2Н + 2 О = Ca(OH) 2 + H 0 2


б) При высокой температуре Н 2 О вступает в реакции и с некоторыми другими металлами, например:


Mg + 2Н + 2 О = Mg(OH) 2 + H 0 2


3Fe + 4Н + 2 О = Fe 2 O 4 + 4H 0 2


в) Al и Zn вытесняют Н 2 из воды в присутствии щелочей:


2Al + 6Н + 2 О + 2NaOH = 2Na + 3H 0 2


2) Взаимодействие с неметаллами, имеющими низкую ЭО (реакции происходят в жестких условиях)


C + Н + 2 О = CO + H 0 2 («водяной газ»)


2P + 6Н + 2 О = 2HPO 3 + 5H 0 2


В присутствии щелочей кремний вытесняет водород из воды:


Si + Н + 2 О + 2NaOH = Na 2 SiO 3 + 2H 0 2


3) Взаимодействие с гидридами металлов


NaH + Н + 2 O = NaOH + H 0 2


CaH 2 + 2Н + 2 О = Ca(OH) 2 + 2H 0 2


4) Взаимодействие с угарным газом и метаном


CO + Н + 2 O = CO 2 + H 0 2


2CH 4 + O 2 + 2Н + 2 O = 2CO 2 + 6H 0 2


Реакции используются в промышленности для получения водорода.

II. Реакции, в которых вода играет роль восстановителя

ти реакции возможны только с очень сильными окислителями, которые способны окислить кислород СО С. О. -2, входящий в состав воды, до свободного кислорода O 2 или до пероксид-анионов 2- . В исключительном случае (в реакции с F 2) образуется кислород со c o. +2.


1) Взаимодействие с фтором


2F 2 + 2Н 2 O -2 = O 0 2 + 4HF



2F 2 + Н 2 O -2 = O +2 F 2 + 2HF


2) Взаимодействие с атомарным кислородом


Н 2 O -2 + O = Н 2 O - 2


3) Взаимодействие с хлором


При высокой Т происходит обратимая реакция


2Cl 2 + 2Н 2 O -2 = O 0 2 + 4HCl

III. Реакции внутримолекулярного окисления - восстановления воды.

Под действием электрического тока или высокой температуры может происходить разложение воды на водород и кислород:


2Н + 2 O -2 = 2H 0 2 + O 0 2


Термическое разложение - процесс обратимый; степень термического разложения воды невелика.

Реакции гидратации

I. Гидратация ионов. Ионы, образующиеся при диссоциации электролитов в водных растворах, присоединяют определенное число молекул воды и существуют в виде гидратированных ионов. Некоторые ионы образуют столь прочные связи с молекулами воды, что их гидраты могут существовать не только в растворе, но и в твердом состоянии. Этим объясняется образование кристаллогидратов типа CuSO4 5H 2 O, FeSO 4 7Н 2 O и др., а также аквакомплексов: CI 3 , Br 4 и др.

II. Гидратация оксидов

III. Гидратация органических соединений, содержащих кратные связи

Реакции гидролиза

I. Гидролиз солей


Обратимый гидролиз:


а) по катиону соли


Fe 3+ + Н 2 O = FeOH 2+ + Н + ; (кислая среда. рН

б) по аниону соли


СО 3 2- + Н 2 O = НСО 3 - + ОН - ; (щелочная среда. рН > 7)


в) по катиону и по аниону соли


NH 4 + + СН 3 СОО - + Н 2 O = NH 4 OH + СН 3 СООН (среда, близкая к нейтральной)


Необратимый гидролиз:


Al 2 S 3 + 6Н 2 O = 2Аl(ОН) 3 ↓ + 3H 2 S


II. Гидролиз карбидов металлов


Al 4 C 3 + 12Н 2 O = 4Аl(ОН) 3 ↓ + 3CH 4 нетан


СаС 2 + 2Н 2 O = Са(ОН) 2 + С 2 Н 2 ацетилен


III. Гидролиз силицидов, нитридов, фосфидов


Mg 2 Si + 4Н 2 O = 2Mg(OH) 2 ↓ + SiH 4 силан


Ca 3 N 2 + 6Н 2 O = ЗСа(ОН) 2 + 2NH 3 аммиак


Cu 3 P 2 + 6Н 2 O = ЗСu(ОН) 2 + 2РН 3 фосфин


IV. Гидролиз галогенов


Cl 2 + Н 2 O = HCl + HClO


Вr 2 + Н 2 O = НВr + НВrО


V. Гидролиз органических соединений


Классы органических веществ

Продукты гидролиза (органические)

Галогеналканы (алкилгалогениды)

Арилгалогениды

Дигалогеналканы

Альдегиды или кетоны

Алкоголяты металлов

Галогенангидриды карбоновых кислот

Карбоновые кислоты

Ангидриды карбоновых кислот

Карбоновые кислоты

Сложные зфиры карбоновых кислот

Карбоновые кислоты и спирты

Глицерин и высшие карбоновые кислоты

Ди- и полисахариды

Моносахариды

Пептиды и белки

α-Аминокислоты

Нуклеиновые кислоты