Ковалентная и химическая связь и ее свойства. Ковалентная связь. Строение простых веществ - неметаллов

Ковалентная связь - химическая связь, образованная обобществлением пары валентных электронных облаков. Обеспечивающие связь электроны называются общей электронной парой .

Св-ва ковалентной связи : направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловливает молекулярное строение веществ и геометрическую форму их молекул. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные.

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Ионная связь.

Ионный тип связи возможен только между атомами, которые резко отличаются по свойствам. Резкое отличие в свойствах элементов приводит к тому, что атом металла полностью теряет свои валентные электроны, а атом неметалла присоединяет их. образовавшиеся положительно и отрицательно заряженный ионы в молекулах и кристаллической решетки силами электростатического притяжения. Такая связь называется ионной.

Пример образование молекулы NaCL в газовой фазе.

Неспецифические виды связи.

Металлическая связь - химическая связь, обусловленная наличием относительно свободных электронов. Характерна как для чистых металлов, так и их сплавов иинтерметаллических соединений.

Механизм металлической связи: Во всех узлах кристаллической решётки расположены положительные ионы металла. Между ними беспорядочно, подобно молекулам газа движутся валентные электроны, отцепившиеся от атомов при образовании ионов. Эти электроны играют роль цемента, удерживая вместе положительные ионы; в противном случае решётка распалась бы под действием сил отталкивания между ионами. Вместе с тем и электроны удерживаются ионами в пределах кристаллической решётки и не могут её покинуть. Силы связи не локализованы и не направлены. Поэтому в большинстве случаев проявляются высокие координационные числа (например, 12 или 8).

Другие свойства: Свободно движущиеся электроны обусловливают высокую электро- и теплопроводность. Вещества, обладающие металлической связью, часто сочетают прочность с пластичностью, так как при смещении атомов друг относительно друга не происходит разрыв связей.

Ван-дер-ваальсовы силы - силы межмолекулярного взаимодействия с энергией 0,8 - 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, в современной науке он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Открыты Я. Д. ван дер Ваальсом в 1869 году.

К ван-дер-ваальсовым силам относятся взаимодействия между диполями (постоянными и индуцированными). Название связано с тем фактом, что эти силы являются причиной поправки на внутреннее давление в уравнении состояния реального газа Ван-дер-Ваальса. Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.

Важными количественными характеристиками ковалентной связи являются энергия связи , ее длина и дипольный момент .

Энергия связи – энергия, выделяющаяся при ее образовании, или необходимая для разъединения двух связанных атомов. Энергия связи характеризует ее прочность.

Длина связи – расстояние между центрами связанных атомов. Чем меньше длина, тем прочнее химическая связь.

Дипольный момент связи (μ) – векторная величина, характеризующая полярность связи (измеряется в дебаях D или кулон-метрах: 1D = 3,4·10 -30 Кл·м).

Длина вектора равна произведению длины связи l на эффективный заряд q , который приобретают атомы при смещении электронной плотности: | μ | = l · q .Вектор дипольного момента направлен от положительного заряда к отрицательному. При векторном сложении дипольных моментов всех связей получают дипольный момент молекулы.
На характеристики связей влияет их кратность:

Ковалентная связь (атомная связь, гомеополярная связь) - химическая связь, образованная перекрытием (обобществлением) пары валентных электронных облаков. Обеспечивающие связь электронные облака (электроны) называются общей электронной парой .

Термин ковалентная связь был впервые введён лауреатом Нобелевской премии Ирвингом Ленгмюром в 1919 году . Этот термин относился к химической связи, обусловленной совместным обладанием электронами, в отличие от металлической связи, в которой электроны были свободными, или от ионной связи, в которой один из атомов отдавал электрон и становилсякатионом, а другой атом принимал электрон и становился анионом.

Позднее (1927 год) Ф.Лондон и В.Гайтлер на примере молекулы водорода дали первое описание ковалентной связи с точки зрения квантовой механики.

С учётом статистической интерпретации волновой функции М.Борна плотность вероятности нахождения связывающих электронов концентрируется в пространстве между ядрами молекулы (рис.1). В теории отталкивания электронных пар рассматриваются геометрические размеры этих пар. Так, для элементов каждого периода существует некоторый средний радиус электронной пары (Å):

0,6 для элементов вплоть до неона; 0,75 для элементов вплоть до аргона; 0,75 для элементов вплоть до криптона и 0,8 для элементов вплоть до ксенона.

Характерные свойства ковалентной связи - направленность, насыщаемость, полярность, поляризуемость - определяют химические и физические свойства соединений.

Направленность связи обусловлена молекулярным строением вещества и геометрической формы их молекулы. Углы между двумя связями называют валентными.

Насыщаемость - способность атомов образовывать ограниченное число ковалентных связей. Количество связей, образуемых атомом, ограничено числом его внешних атомных орбиталей.

Полярность связи обусловлена неравномерным распределением электронной плотности вследствие различий в электроотрицательностях атомов. По этому признаку ковалентные связи подразделяются на неполярные и полярные (неполярные - двухатомная молекула состоит из одинаковых атомов (H 2 , Cl 2 , N 2) и электронные облака каждого атома распределяются симметрично относительно этих атомов; полярные - двухатомная молекула состоит из атомов разных химических элементов, и общее электронное облако смещается в сторону одного из атомов, образуя тем самым асимметрию распределения электрического заряда в молекуле, порождая дипольный момент молекулы).

Поляризуемость связи выражается в смещении электронов связи под влиянием внешнего электрического поля, в том числе и другой реагирующей частицы. Поляризуемость определяется подвижностью электронов. Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Однако, дважды лауреат Нобелевской премии Л. Полинг указывал, что «в некоторых молекулах имеются ковалентные связи, обусловленные одним или тремя электронами вместо общей пары» . Одноэлектронная химическая связь реализуется в молекулярном ионе водорода H 2 + .

Молекулярный ион водорода H 2 + содержит два протона и один электрон. Единственный электрон молекулярной системы компенсирует электростатическое отталкивание двух протонов и удерживает их на расстоянии 1,06 Å (длина химической связи H 2 +). Центр электронной плотности электронного облака молекулярной системы равноудалён от обоих протонов на боровский радиус α 0 =0,53 Å и является центром симметрии молекулярного иона водорода H 2 + .

9- вопрос) Способы образования ковалентной связи. Приведите примеры.

Способы образования ковалентной связи

Существуют два главных способа образования ковалентной связи *.

1) Электронная пара, образующая связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденныхатомах.

Однако число ковалентных связей может быть больше числа неспаренных электронов. Например, в невозбужденном состоянии (которое называется также основным состоянием) атом углерода имеет два неспаренных электрона, однако для него характерны соединения, в которых он образует четыре ковалентные связи. Это оказывается возможным в результате возбуждения атома. При этом один из s-электронов переходит на p-подуровень:

Увеличение числа создаваемых ковалентных связей сопровождается выделением большего количества энергии, чем затрачивается на возбуждение атома. Поскольку валентность атома зависит от числа неспаренных электронов, возбуждение приводит к повышению валентности. У атомов азота, кислорода, фтора количество неспаренных электронов не увеличивается, т.к. в пределах второго уровня нет свободных орбиталей *, а перемещение электронов на третий квантовый уровень требует значительно большей энергии, чем та, которая выделилась бы при образовании дополнительных связей. Таким образом, при возбуждении атома переходы электронов на свободныеорбитали возможны только в пределах одного энергетического уровня .

Элементы 3-го периода – фосфор, сера, хлор – могут проявлять валентность, равную номеру группы. Это достигается возбуждением атомов с переходом 3s- и 3p-электронов на вакантные орбитали 3d-подуровня:

P* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 1 (валентность 5)

S* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 (валентность 6)

Cl* 1s 2 2s 2 2p 6 3s 1 3p 3 3d 3 (валентность 7)

В приведенных выше электронных формулах * возбужденных атомов подчеркнуты подуровни *, содержащие только неспаренныеэлектроны. На примере атома хлора легко показать, что валентность может быть переменной:

В отличие от хлора, валентность атома F постоянна и равна 1, т.к. на валентном (втором) энергетическом уровне отсутствуюторбитали d-подуровня и другие вакантные орбитали.

2) Ковалентные связи могут образовываться за счет спаренных электронов, имеющихся на внешнем электронном слое атома. В этом случае второй атом должен иметь на внешнем слое свободную орбиталь. Например, образование иона аммония из молекулы аммиакаи иона водорода можно отобразить схемой:

Атом, предоставляющий свою электронную пару для образования ковалентной связи *, называется донором, а атом, предоставляющий пустую орбиталь, – акцептором. Ковалентная связь, образованная таким способом, называется донорно-акцепторной связью. В катионе аммония эта связь по своим свойствам абсолютно идентична трем другим ковалентным связям, образованным первым способом, поэтому термин “донорно-акцепторная” обозначает не какой-то особый вид связи, а лишь способ ее образования.

10-вопрос) Кислотно-основное взаимодействие – реакции нейтрализации. Кислые и основные соли. Приведите примеры.

NaOH + HCl = NaCl + H2O - реакция нейтрализации
NaOH + H2SO4 = NaHSO4 + H2O - образование кислой соли гидросульфата натрия, кислые соли могут образовывать иногоосновные кислоты, например Н3РО4 может образовать 2 кислые соли NaH2PO4 . Na2HPO4 . -кислые соли - продукт неполного замещения катионов водорода в кислоте.
Al(OH)3 + 3HCl = AlCl3 + 3H2O - средняя соль
Al(OH)3 + 2HCl = Cl2 + 2H2O - гидроксохлорид алюминия - основная соль
Al(OH)3 + HCl = Cl + H2O - дигидроксохлорид алюминия
Основная соль - продукт неполного замещения гидроксильных групп основания анионами кислотного остатка.

Теории кислот и оснований - совокупность фундаментальных физико-химических представлений, описывающих природу и свойства кислот и оснований. Все они вводят определения кислот и оснований - двух классов веществ, реагирующих между собой. Задача теории - предсказание продуктов реакции между кислотой и основанием и возможности её протекания, для чего используются количественные характеристики силы кислоты и основания. Различия между теориями лежат в определениями кислот и оснований, характеристики их силы и, как следствие - в правилах предсказания продуктов реакции между ними. Все они имеют свою область применимости, каковые области частично пересекаются.

Кислотно-основные взаимодействия чрезвычайно распространенены в природе и находят широкое применение в научной и производственной практике. Теоретические представления о кислотах и основаниях имеют важное значение в формировании всех концептуальных систем химии и оказывают разностороннее влияние на развитие многих теоретических концепций во всех основных химических дисциплинах.

На основе современной теории кислот и оснований разработаны такие разделы химических наук, как химия водных и неводных растворов электролитов, рН-метрия в неводных средах, гомо- и гетерогенный кислотно-основный катализ, теория функций кислотности и многие другие.

11- вопрос) Ионная связь, ее свойства, приведите примеры.

В отличие от ковалентной связи ионная связь не обладает насыщаемостью.
Прочность ионных связей.
Вещества с ионными связями в молекулах, как правило, имеют более высокие температуры кипения и плавления.

Ионная связь - очень прочная химическая связь, образующаяся между атомами с большой разностью (>1,5 по шкале Полинга) электроотрицательностей, при которой общая электронная пара полностью переходит к атому с большей электроотрицательностью.Это притяжение ионов как разноименно заряженных тел. Примером может служить соединение CsF, в котором «степень ионности» составляет 97 %. Рассмотрим способ образования на примере хлорида натрия NaCl. Электронную конфигурацию атомов натрия и хлора можно представить: 11 Na 1s2 2s2 2p 6 3s1; 17 Cl 1s2 2s2 2p6 Зs2 3р5. Это атомы с незавершенными энергетическими уровнями. Очевидно, для их завершения атому натрия легче отдать один электрон, чем присоединить семь, а атому хлора легче присоединить один электрон, чем отдать семь. При химическом взаимодействии атом натрия полностью отдает один электрон, а атом хлора принимает его. Схематично это можно записать так: Na. - l е -> Na+ ион натрия, устойчивая восьми электронная 1s2 2s2 2p6 оболочка за счет второго энергетического уровня. :Cl + 1е --> .Cl - ион хлора, устойчивая восьми электронная оболочка. Между ионами Na+ и Cl- возникают силы электростатического притяжения, в результате чего образуется соединение. Ионная связь - крайний случай поляризации ковалентной полярной связи. Образуется между типичными металлом и неметаллом. При этом электроны у металла полностью переходят к неметаллу. Образуются ионы.

Если химическая связь образуется между атомами, которые имеют очень большую разность электроотрицательностей (ЭО > 1.7 по Полингу), то общая электронная параполностью переходит к атому с большей ЭО. Результатом этого является образование соединения противоположно заряженных ионов:

Между образовавшимися ионами возникает электростатическое притяжение, которое называется ионной связью. Вернее, такой взгляд удобен. На деле ионная связь между атомами в чистом виде не реализуется нигде или почти нигде, обычно на деле связь носит частично ионный, а частично ковалентный характер. В то же время связь сложных молекулярных ионов часто может считаться чисто ионной. Важнейшие отличия ионной связи от других типов химической связи заключаются в ненаправленности и ненасыщаемости. Именно поэтому кристаллы, образованные за счёт ионной связи, тяготеют к различным плотнейшим упаковкам соответствующих ионов.

Характеристикой подобных соединений служит хорошая растворимость в полярных растворителях (вода, кислоты и т. д.). Это происходит из-за заряженности частей молекулы. При этом диполи растворителя притягиваются к заряженным концам молекулы, и, в результате Броуновского движения, «растаскивают» молекулу вещества на части и окружают их, не давая соединиться вновь. В итоге получаются ионы окружённые диполями растворителя.

При растворении подобных соединений, как правило, выделяется энергия, так как суммарная энергия образованных связей растворитель-ион больше энергии связи анион-катион. Исключения составляют многие соли азотной кислоты (нитраты), которые при растворении поглощают тепло (растворы охлаждаются). Последний факт объясняется на основе законов, которые рассматриваются в физической химии.

примеры: (MgS, K2CO3), основания(LiOH, Ca(OH)2), основные оксиды(BaO, Na2O)
тип решетки- металлическая

12) Обменные реакции в растворах. Приведите примеры.

В практически необратимых реакциях равновесие сильно смещено в сторону образования продуктов реакции.

Часто встречаются процессы при которых слабые электролиты или малорастворимые соединения входят в число исходных и в число конечных продуктов реакции. Например,

HCN(p) + CH 3 COO - (p)↔ CH 3 COOH(p) + CN - (p) (1), ΔG˚=43кДж

NH 4 OH(p) + H + (p) ↔ H 2 O(ж) + NH 4 + (p) (2) ΔG˚= -84кДж

слабые электролиты есть и в левой и в правой части уравнений.

В этих случаях равновесие обратимого процесса смещается в сторону образования вещества, обладающего меньшей Кдиссоц.

В реакции (1) равновесие смещено влево K HCN = 4,9 · 10 -10 < K CH 3 COOH = 1,8 · 10 -5 , в реакции (2) – сильно сдвинуто вправо (K H 2 O =1,8 · 10 -16 < K NH 4 OH = 1,8 · 10 -5).

Примерами процессов в уравнении реакции которых слева и справа входят труднорастворимые вещества , могут служить:

AgCl(k)↓ + NaI(p) ↔ AgI↓(k) + NaCl(p) (1) ΔG˚= - 54кДж

BaCO 3 ↓(k) + Na 2 SO 4 (p) ↔ BaSO 4 ↓(k) + Na 2 CO 3 (p) (2) ΔG˚≈ 0

Равновесие смещается в сторону образования менее растворимого соединения. В реакции (1) равновесие смещено вправо, т.к. ПРAgI=1,1·10 -16 < ПРAgCl =1,8·

10 -10 . В реакции (2) равновесие лишь несколько сдвинуто в сторону BaSO 4

(ПР BaCO 3 = 4,9·10 -9 > ПР BaSO 4 =1,08·10 -10).

Встречаются процессы в уравнениях которых с одной стороны равенства имеется малорастворимое соединение, а с другой стороны – слабый электролит. Так, равновесие в системе

AgCN(k)↓ + H + (p) ↔ HCN(p) + Ag + (p) ΔG˚= - 46кДж

значительно смещено вправо, поскольку ион СN - более прочно связывается в молекулу очень слабого электролита HCN, чем в молекулу малорастворимого вещества AgCN. Поэтому осадок AgCN растворяется при добавлении азотной кислоты.

Ковалентная связь осуществляется обобществленными валентными электронами, находящимися на общей для двух соседних атомов связывающей орбитали (см. разд. 2.2.1). При этом в случае элементарных веществ каждый из атомов «отдает» на связь одинаковое число валентных электронов и достраивает свою валентную оболочку до полностью заполненной за счет связывающих электронов ближайших соседних атомов в решетке. С этим свойством насыщаемости ковалентной связи мы познакомились на примере молекулы водорода. Его следствием является правило, установленное Юм-Розери. Согласно ему для кристаллов элементарных веществ, в которых реализуется преимущественно ковалентная связь, выполняется следующее соотношение между координационным числом Z к и номером группы N , где расположен данный элемент:

Z к = 8 − N . Структура элементарных полупроводников (преимущественная связь - ковалентная) задается этим простым эмпирическим правилом и направлением ковалентной связи.

Направление ковалентной связи определяется распределением электронной плотности в кристалле, которое можно установить с помощью, например, рентгеновских данных. Они свидетельствуют, что в кристаллах с ковалентной связью электронная плотность валентных электронов существенно неравномерно распределена в пространстве. В направлениях, являющихся кратчайшими для двух соседних атомов, электронная плотность выше, чем в других направлениях. Это означает, что валентные электроны как бы локализованы в пространстве и образуют «электронные мостики», то есть ковалентная связь имеет резко выраженный направленный характер . Характер распределения электронной плотности при образовании ковалентной связи зависит от конкретной электронной структуры взаимодействующих атомов.

Так как ковалентная химическая связь в отличие от других типов химической связи имеет локализованный характер, то она определяется не только энергией связи, но имеет и геометрические характеристики. Геометрическими характеристиками ковалентной связи являются ее длина и углы между связями в молекуле или кристалле. Длиной ковалентной

химической связи называется расстояние между ядрами атомов, объединенных ковалентной связью, в кристалле. Она зависит от размеров взаимодействующих атомов и степени перекрытия их электронных облаков. Длину связи и углы между связями определяют экспериментально с помощью методов молекулярной спектроскопии, дифракции рентгеновских лучей и другими методами.

Свойство направленности ковалентной связи рассмотрим на примере образования химической связи в алмазе.9 При этом будем руководствоваться правилами, составляющими содержание теории направленных валентностей.

1. Ковалентная единичная связь образуется при взаимодействии двух электронов с противоположными спинами, принадлежащих разным атомам.

2. Направление ковалентной связи должно отвечать направлению, в котором орбитали данного валентного электрона в максимальной степени перекрывается орбиталями другого спаренного с ним валентного электрона, принадлежащего соседнему атому.

Следует иметь в виду, что в ряде случаев форма орбиталей валентных электронов, участвующих в образовании связи, изменяется незначительно, а в ряде случаев происходит ее резкое изменение. В последнем случае возникают смешанные, так называемые гибридные орбитали .

В алмазе, состоящем из атомов углерода, как хорошо известно, реализуется ковалентная химическая связь. Электронная конфигурация валентной оболочки атома углерода в невозбужденном состоянии - 2s 22p 2. На 1s -орбитали и на 2s -орбитали находятся по два спаренных электрона, спины которых антипараллельны. Валентными оказываются две 2p -орбитали, на которых располагается по одному электрону, способному принимать участие в образовании химической связи. Эти 2p -орбитали

образуют между собой угол в 90◦. Таким образом, углерод в своих соединениях должен быть двухвалентным и формировать связи, между которыми прямой угол.

Однако, как показывают экспериментальные данные, в большинстве своих соединений углерод четырехвалентен и все четыре связи углерода одинаково прочны и имеют одинаковую ориентацию относительно друг

друга: угол между связями равен 109◦28∗. Это обстоятельство объясняется гибридизацией орбиталей, происходящей в два этапа. Сначала атом углерода переходит из основного состояния в возбужденное, при котором один из электронов с заполненной 2s 2-орбитали переходит на

9 Ковалентная связь в молекуле водорода не обладает свойством направленности из-за сферически симметричного распределения электронной плотности в s -состояниях.

Рис. 2.10. Схема гибридизации s и p -электронных облаков и пространственная ориентация sp 3 -гибридов.

пустую 2p -орбиталь. Далее происходит «перемешивание» четырех волновых функций и образование четырех новых одинаковых волновых функций, которые не являются ни s -, ни p -функциями. Это - гибридные sp 3-функции. Они эквивалентны и имеют ориентацию, показанную на рис. 2.10. Таким образом, в результирующем состоянии атом углерода в алмазе имеет четыре неспаренных электрона. Направления максимальной плотности обменных облаков, как видно из рис. 2.12, сосредоточены вдоль пространственных диагоналей куба <111>. Атом с четырьмя соседями образует правильный тетраэдр, а из совокупности тетраэдров строится «бесконечная ковалентная молекула».

Прочность химической связи зависит от степени перекрытия орбиталей валентных электронов: чем больше перекрытие, тем прочнее связь. Расчеты показывают, что перекрытие электронных оболочек соединяющихся атомов в случае гибридных sp 3-орбиталей оказывается существенно больше, чем в случае негибридных s и p -орбиталей. Хотя гибридизованным состояниям соответствует более высокая энергия электронов в атоме, чем негибридизованным, тем не менее полная энергия кристалла оказывается ниже в случае образования связи из sp 3-гибридов, поэтому гибридизация и оказывается энергетически выгодной.

В образовании ковалентной связи могут принимать участие s -, p -, d и f -орбитали. Если происходит гибридизация при образовании связи, то в зависимости от того, сколько и каких орбит гибридизуется, различают sp -, sp 2-, dsp 2-, sp d 2sp 3-гибридные орбитали (рис. 2.11).

Таким образом, структура ковалентных кристаллов определяется правилом Юм-Розери, дающим число ближайших соседей, необходимых для полного насыщения химической связи, и направлением химической связи, которое может быть установлено из анализа волновых функций ва

Рис. 2.11. Пространственная ориентация sp -, sp 2 -, dsp 2 -, sp 3 и d 2 sp 3-гибридных орбиталей.

лентных электронов или экспериментально. Характерная величина энергии ковалентной связи составляет величину порядка 5–7 эВ. В полупроводниковых материалах прослеживаются следующие общие закономерности в изменении свойств при изменении энергии связи. С увеличением энергии связи между атомами уменьшается период кристаллической решетки, возрастают температура плавления и ширина запрещенной зоны.

Наиболее характерные свойства простых кристаллов, в которых реализуется преимущественно один из четырех типов химической связи, приведены в табл. 2.2.

Таблица 2.2. Свойства четырех групп твердых тел, отличающихся типами межатомных связей.

Тип межатомной связи

Характеристика и энергия связи

Ненаправленная и ненасыщенная, сильная связь; 5–7 эВ на пару ионов.

Направленная

и насыщенная, сильная связь; 5–7 эВ на атом.

Ненаправленная и ненасыщенная связь; около

3.5 эВ на атом.

Ненаправленная и ненасыщенная, слабая, короткодействующая

связь; ≈0.1 эВ на

Ионная Ковалентная Металлическая Ван-дер-Ваальсова

Структурные свойства

Крупные анионы образуют структуры с плотной упаковкой, в пустотах которых размещены катионы (Z к = 8, 6, 4 и 3).

Структуры с неплотной упаковкой решетки (например, Z к = 4) и низкой плотностью.

Z к = 12 и 8) и высокой плотностью.

Компактные кристаллические структуры с плотнейшей упаковкой (Z к = 12) и высокой плотностью.

Тепловые свойства

Довольно высокие температуры плавления. Низкий коэффициент расширения.

Высокие температуры плавления. Низкий коэффициент расширения.

Различные температуры плавления.

Низкие температуры плавления. Высокий коэффициент расширения.

Электрические свойства

Изоляторы. Проводимость носит в основном ионный характер и увеличивается с ростом температуры.

Электронный тип проводимости (два типа носителей). Активационная зависимость проводимости от температуры.

Проводники. Основной тип проводимости - электронный. Проводимость с ростом температуры уменьшается.

Изоляторы.

Оптические свойства

Прозрачны для электромагнитного излучения от низких частот до края поглощения. Обычно прозрачны в видимой области спектра.

Прозрачны для электромагнитное излучения от низких частот до края поглощения.

Непрозрачны для электромагнитных волн от самых низких частот вплоть до середины ультрафиолетовой области; хорошо отражают свет.

Прозрачны для электромагнитного излучения от низких частот до дальней ультрафиолетовой области.

Ионная Ковалентная Металлическая Ван-дер-Ваальсова

Зонная структура

зона отделена

от следующей пустой зоны проводимости широкой запрещенной зоной (Eg > 2–3 эВ).

Полностью заполненная верхняя валентная

зона отделена

от следующей пустой зоны проводимости запрещенной зоной Eg < 2–3 эВ.

Зона проводимости частично заполнена.

Полностью заполненная верхняя валентная

зона отделена

от следующей пустой зоны проводимости очень широкой запрещенной зоной.

Ковалентная связь

Характеристика химической связи. Гибридизация.

ЛЕКЦИЯ №3. Химическая связь и строение молекул. Валентность.

Лишь немногие химические элементы в природных условиях находятся в одноатомном состоянии (например, инертные газы). Свободные атомы остальных элементов образуют более сложные системы – молекулы, имеющие более стабильные электронные конфигурации. Это явление носит название образование химической связи.

Химическая связь - это взаимодействие двух или нескольких атомов, в результате которого образуется химически устойчивая двух- или многоатомная система. Образование химической связи сопровождается уменьшением полной энергии системы.

В основе теории химической связи лежат представления об электронных взаимодействиях. Наиболее устойчивыми (прочными) группировками электронов являются завершенные внешние электронные слои атомов инертных газов (двухэлекронный у гелия и восьмиэлектронный у остальных благородных газов). Незавершенные внешние электронные слои всех остальных элементов являются неустойчивыми и при соединении таких атомов с другими атомами происходит перестройка их электронных оболочек. Химическая связь образуется за счет валентных электронов, но осуществляется по-разному.

Валентными называются электроны, которые участвуют в образовании химических связей, в основном это электроны последнего или предпоследнего энергетического уровня.

Существует несколько типов химической связи: ионная, металлическая, ковалентная и водородная.

Простейший пример ковалентной связи – образование молекулы водорода. Атомы водорода имеют электронную оболочку из одного непарного s-электрона, т.е. до завершения уровня не хватает одного электрона. При сближении атомов водорода до определенного расстояния происходит взаимодействие электронов с антипараллельными спинами с формированием общей электронной пары. Общая электронная пара образуется в результате частичного перекрывания s-орбиталей и при этом в области перекрывания орбиталей создается наибольшая плотность.

Связь атомов с помощью общих электронных пар называется ковалентной.

Молекула с ковалентной связью может быть записана в виде двух формул: электронной (электрон обозначается точкой) и структурной (общая электронная пара обозначается чертой).

1. Длина связи - это расстояние между ядрами атомов. Выражается в нм. Химическая связь тем прочнее, чем меньше ее длина. Однако мерой прочности связи является ее энергия.

2. Энергия связи – это то количество энергии, которое выделяется при образовании химической связи и следовательно, это та работа, которую надо затратить на разрыв связи. Выражается в кДж/моль. Энергия связи увеличивается с уменьшением длины связи.



3. Под насыщаемостью понимают способность атомов образовывать ограниченное число ковалентных связей. Например, атом водорода, имея один неспаренный электрон, может образовывать одну связь, а атом углерода в возбужденном состоянии - не более четырех связей. Вследствие насыщаемости связей молекулы имеют определенный состав. Однако и при насыщенных ковалентных связях могут образовываться более сложные молекулы по донорно-акцепторному механизму.

4. Кратность определяется числом общих электронных пар, между атомами, т.е. количеством химических связей. В рассмотренной молекуле водорода, а также в молекулах фтора и хлора связь между атомами осуществляется за счет одной электронной пары, такая связь называется одинарной . В молекуле кислорода – двойная , а в молекуле азота – тройная.

Причем ковалентная связь может быть двух типов:

1) Если электронные облака перекрываются в направлении прямой, которая соединяет ядра атомов (т.е. по оси связи ), такая ковалентная связь называется сигма-связью . Ковалентные сигма-связи образуются при перекрывании орбиталей: s-s (молекула водорода), s-p (хлороводород) и р-р (молекула хлора).

2) Если перекрываются р-орбитали, направленные перпендикулярно оси связи, образуются две области перекрывания по обе стороны оси связи и такая связь называется пи-связью .

Несмотря на то, что энергия пи-связи меньше, чем сигма, суммарная энергия двойной, а тем более тройной связи выше одинарной.

5. Полярность связи определяется расположением общей электронной пары, если она распределяется в пространстве симметрично относительно ядер обоих атомов, то такая ковалентная связь называется неполярной . Примером, являются двухатомные молекулы, состоящие из атомов одного и того же элемента, т.е. простые вещества.

В случае же полярной ковалентной связи , молекулу образуют атомы разных элементов и электронное облако связи, в данном случае, смещено к атому с большей относительной электроотрицательностью. Например, при образовании молекулы HCl общая электронная пара смещена к атому хлора, так как он обладает большей ЭО.

ЭО – это способность атомов элементов притягивать к себе общие электронные пары. Атом, более ЭО элемента принимает эффективный отрицательный заряд d-, а второй атом – эффективный положительный заряд d+. В результате возникает диполь. Мерой полярности связи служит электрический дипольный момент .

6. Направленность ковалентной связи обуславливает пространственную структуру молекул, т.е. их геометрическую форму. Количественно направленность определяется валентным углом – это угол между химическими связями. Ковалентные связи, образуемые многовалентными атомами, всегда имеют пространственную направленность.

Ковалентная связь — самый распространенный тип химической связи, осуществляемой при взаимодействии с одинаковыми или близкими значениями электроотрицательности.

Ковалентная связь — это связь атомов с помощью общих электронных пар.

После открытия электрона проводилось много попыток разработать электронную теорию химической связи. Наиболее удачными стали работы Льюиса (1916 г.), который предложил рассматривать образование связи как следствие возникновения общих для двух атомов электронных пар. Для этого каждый атом предоставляет одинаковое количество электронов и пытается окружить себя октетом или дублетом электронов, характерным для внешней электронной конфигурации инертных газов. Графически образования ковалентных связей за счет неспаренных электронов по методу Льюиса изображают с помощью точек, обозначающих внешние электроны атома.

Образование ковалентной связи согласно теории Льюиса

Механизм образования ковалентной связи

Основным признаком ковалентной связи является наличие общей электронной пары, принадлежащей обоим химически соединенным атомам, поскольку пребывание двух электронов в поле действия двух ядер энергетически выгоднее, чем нахождение каждого электрона в поле своего ядра. Возникновение общей электронной пары связи может проходить по разным механизмам, чаще — по обменному, а иногда — по донорно-акцепторных.

по принципу обменного механизма образования ковалентной связи каждый из взаимодействующих атомов поставляет на образование связи одинаковое количество электронов с антипараллельными спинами. К примеру:


Общая схема образования ковалентной связи: а) по обменному механизму; б) по донорно-акцепторному механизму

по донорно-акцепторному механизму двухэлектронная связь возникает при взаимодействии различных частиц. Одна из них — донор А: имеет неразделенную пару электронов (то есть такую, что принадлежит только одному атому), а другая — акцептор В — имеет вакантную орбиталь.

Частица, которая предоставляет для связи двухэлектронное (неразделенную пару электронов), называется донором, а частица со свободной орбиталью, которая принимает эту электронную пару, — акцептором.

Механизм образования ковалентной связи за счет двухэлектронного облака одного атома и вакантной орбитали другого называется донорно-акцепторным механизмом.

Донорно-акцепторный связь иначе называется семиполярной, поскольку на атоме-доноре возникает частичный эффективный положительный заряд δ+ (за счет того, что его неразделенная пара электронов отклонилась от него), а на атоме-акцепторе — частичный эффективный отрицательный заряд δ- (благодаря тому, что происходит смещение в его сторону неразделенной электронной пары донора).

В качестве примера простого донора электронной пары можно привести ион Н, который имеет неразделенную электронную пару. В результате присоединения негативного гидрид-иона к молекуле, центральный атом которой имеет свободную орбиталь (на схеме обозначена как пустая квантовая ячейка), например ВН 3 , образуется сложный комплексный ион ВН 4 с отрицательным зарядом (Н + ВН 3 ⟶⟶ [ВН 4 ] —) :

Акцептор электронной пары — ион водорода, или просто протон Н + . Его присоединение к молекуле, центральный атом которой имеет неразделенную электронную пару, например к NH 3 , тоже приводит к образованию комплексного иона NH 4 + , но уже с положительным зарядом:

Метод валентных связей

Первая квантово-механическая теория ковалентной связи была создана Гейтлером и Лондоном (в 1927 г.) для описания молекулы водорода, а затем была применена Полингом к многоатомным молекулам. Эта теория называется методом валентных связей , основные положения которого кратко можно изложить так:

  • каждая пара атомов в молекуле содержится вместе с помощью одной или нескольких общих электронных пар, при этом электронные орбитали взаимодействующих атомов перекрываются;
  • прочность связи зависит от степени перекрывания электронных орбиталей;
  • условием образования ковалентной связи является антинаправленность спинов электронов; благодаря этому возникает обобщенная электронная орбиталь с наибольшей электронной плотностью в межъядерном пространстве, которая обеспечивает притяжение положительно заряженных ядер друг к другу и сопровождается уменьшением общей энергии системы.

Гибридизация атомных орбиталей

Несмотря на то, что в образовании ковалентных связей участвуют электроны s-, p- или d-орбиталей, имеющие различные форму и различную ориентацию в пространстве, во многих соединениях эти связи оказываются равноценными. Для объяснения этого явления было введено понятие «гибридизация».

Гибридизация — это процесс смешивания и выравнивания орбиталей по форме и энергии, при котором происходит перераспределение электронных плотностей близких по энергии орбиталей, в результате чего они становятся равноценными.

Основные положения теории гибридизации:

  1. При гибридизации начальная форма и орбиталей взаимно меняются, при этом образуются новые, гибридизованные орбитали, но уже с одинаковой энергией и одинаковой формы, напоминающей неправильную восьмерку.
  2. Число гибридизованных орбиталей равно числу выходных орбиталей, участвующих в гибридизации.
  3. В гибридизации могут участвовать орбитали с близкими по значениям энергиями (s- и p-орбитали внешнего энергетического уровня и d-орбитали внешнего или предварительного уровней).
  4. Гибридизованные орбитали более вытянуты в направлении образования химических связей и поэтому обеспечивают лучшее перекрытие с орбиталями соседнего атома, вследствие этого становится более прочным, чем образованный за счет электронов отдельных негибридных орбиталей.
  5. Благодаря образованию более прочных связей и более симметричном распределения электронной плотности в молекуле получается энергетический выигрыш, который с запасом компенсирует расход энергии, необходимой для процесса гибридизации.
  6. Гибридизованные орбитали должны ориентироваться в пространстве таким образом, чтобы обеспечить взаимное максимальное отдаление друг от друга; в этом случае энергия отталкивания наименьшая.
  7. Тип гибридизации определяется типом и количеством выходных орбиталей и меняет размер валентного угла, а также пространственную конфигурацию молекул.

Форма гибридизованных орбиталей и валентных углы (геометрические углы между осями симметрии орбиталей) в зависимости от типа гибридизации: а) sp-гибридизация; б) sp 2 -гибридизация; в) sp 3 -гибридизация

При образовании молекул (или отдельных фрагментов молекул) чаще всего встречаются такие типы гибридизации:


Общая схема sp-гибридизации

Связи, которые образуются с участием электронов sp-гибридизованнных орбиталей, также размещаются под углом 180 0 , что приводит к линейной форме молекулы. Такой тип гибридизации наблюдается в галогенидах элементов второй группы (Be, Zn, Cd, Hg), атомы которых в валентном состоянии имеют неспаренные s- и р-электроны. Линейная форма характерна и для молекул других элементов (0=C=0,HC≡CH), в которых связи образуются sp-гибридизованными атомами.


Схема sp 2 -гибридизации атомных орбиталей и плоская треугольная форма молекулы, которая обусловлена sp 2 -гибридизацией атомных орбиталей

Этот тип гибридизации наиболее характерен для молекул р-элементов третьей группы, атомы которых в возбужденном состоянии имеют внешнюю электронную структуру ns 1 np 2 , где n — номер периода, в котором находится элемент. Так, в молекулах ВF 3 , BCl 3 , AlF 3 и в других связи образованы за счет sp 2 -гибридизованных орбиталей центрального атома.


Схема sp 3 -гибридизации атомных орбиталей

Размещение гибридизованных орбиталей центрального атома под углом 109 0 28` вызывает тетраэдрическую форму молекул. Это очень характерно для насыщенных соединений четырехвалентного углерода СН 4 , СCl 4 , C 2 H 6 и других алканов. Примерами соединений других элементов с тетраэдрической строением вследствие sp 3 -гибридизации валентных орбиталей центрального атома является ионы: BН 4 — , BF 4 — , PO 4 3- , SO 4 2- , FeCl 4 — .


Общая схема sp 3d -гибридизации

Этот тип гибридизации чаще всего встречается в галогенидах неметаллов. В качестве примера можно привести строение хлорида фосфора PCl 5 , при образовании которого атом фосфора (P … 3s 2 3p 3) сначала переходит в возбужденное состояние (P … 3s 1 3p 3 3d 1), а затем подвергается s 1 p 3 d- гибридизации — пять одноэлектронных орбиталей становятся равноценными и ориентируются вытянутыми концами к углам мысленной тригональной бипирамиды. Это и определяет форму молекулы PCl 5 , которая образуется при перекрытии пяти s 1 p 3 d- гибридизованных орбиталей с 3р-орбиталями пяти атомов хлора.

  1. sp — Гибридизация. При комбинации одной s- i одной р-орбиталей возникают две sp-гибридизованные орбитали, расположенные симметрично под углом 180 0 .
  2. sp 2 — Гибридизация. Комбинация одной s- и двух р-орбиталей приводит к образованию sp 2 -гибридизованных связей, расположенных под углом 120 0 , поэтому молекула приобретает форму правильного треугольника.
  3. sp 3 — Гибридизация. Комбинация четырех орбиталей — одной s- и трех р приводит к sp 3 — гибридизации, при которой четыре гибридизованные орбитали симметрично ориентированы в пространстве к четырем вершинам тетраэдра, то есть под углом 109 0 28 `.
  4. sp 3 d — Гибридизация. Комбинация одной s-, трех р- и одной d- орбиталей дает sp 3 d- гибридизацию, что определяет пространственную ориентацию пяти sp 3 d-гибридизованных орбиталей к вершинам тригональной бипирамиды.
  5. Другие типы гибридизации. В случае sp 3 d 2 -гибридизации шесть sp 3 d 2 -гибридизованных орбиталей направлены к вершинам октаэдра. Ориентация семи орбиталей к вершинам пентагональной бипирамиды соответствует sp 3 d 3 -гибридизации (или иногда sp 3 d 2 f) валентных орбиталей центрального атома молекулы или комплекса.

Метод гибридизации атомных орбиталей объясняет геометрическую структуру большого количества молекул, однако согласно опытным данным чаще наблюдаются молекулы с несколько другими значениями валентных углов. Например, в молекулах СН 4 , NH 3 и Н 2 О центральные атомы находятся в sp 3 -гибридизованном состоянии, поэтому можно было бы ожидать, что валентные углы в них равны тетраэдрическим (~ 109,5 0). Экспериментально установлено, что валентный угол в молекуле СН 4 на самом деле составляет 109,5 0 . Однако в молекулах NH 3 и Н 2 O значение валентного угла отклоняется от тетраэдрического: он равен 107,3 0 в молекуле NH 3 и 104,5 0 в молекуле Н 2 О. Такие отклонения объясняется наличием неразделенной электронной пары у атомов азота и кислорода. Двухэлектронная орбиталь, которая содержит неразделенную пару электронов, благодаря повышенной плотности отталкивает одноэлектронные валентные орбитали, что приводит к уменьшению валентного угла. У атома азота в молекуле NH 3 из четырех sp 3 -гибридизованных орбиталей три одноэлектронные орбитали образуют связи с тремя атомами Н, а на четвертой орбитали содержится неразделенная пара электронов.

Несвязанная электронная пара, которая занимает одну из sp 3 -гибридизованных орбиталей, направленных к вершинам тетраэдра, отталкивая одноэлектронные орбитали, вызывает асимметричное распределение электронной плотности, окружающей атом азота, и как следствие сжимает валентный угол до 107,3 0 . Аналогичная картина уменьшения валентного угла от 109,5 0 до 107 0 в результате воздействия неразделенной электронной пары атома N наблюдается и в молекуле NCl 3 .


Отклонение валентного угла от тетраэдрического (109,5 0) в молекуле: а) NН3 ; б) NCl3

У атома кислорода в молекуле Н 2 О на четыре sp 3 -гибридизованные орбитали приходится по две одноэлектронные и две двухэлектронные орбитали. Одноэлектронные гибридизованные орбитали участвуют в образовании двух связей с двумя атомами Н, а две двухэлектронные пары остаются неразделенными, то есть принадлежащими только атому H. Это увеличивает асимметричность распределения электронной плотности вокруг атома О и уменьшает валентный угол по сравнению с тетраэдрическим до 104.5 0 .

Следовательно, число несвязанных электронных пар центрального атома и их размещения на гибридизованных орбиталях влияет на геометрическую конфигурацию молекул.

Характеристики ковалентной связи

Ковалентная связь имеет набор определенных свойств, которые определяют ее специфические особенности, или характеристики. К ним, кроме уже рассмотренных характеристик «энергия связи» и «длина связи», относятся: валентный угол, насыщенность, направленность, полярность и тому подобное.

1. Валентный угол — это угол между соседними осями связей (то есть условными линиями, проведенными через ядра химически соединенных атомов в молекуле). Величина валентного угла зависит от природы орбиталей, типа гибридизации центрального атома, влияния неразделенных электронных пар, которые не участвуют в образовании связей.

2. Насыщенность . Атомы имеют возможности для образования ковалентных связей, которые могут формироваться, во-первых, по обменному механизму за счет неспаренных электронов невозбуждённого атома и за счет тех неспаренных электронов, которые возникают в результате его возбуждения, а во-вторых, по донорно акцепторному механизму. Однако общее количество связей, которые может образовывать атом, ограничено.

Насыщенность — это способность атома элемента образовывать с другими атомами определенное, ограниченное количество ковалентных связей.

Так, второго периода, которые имеют на внешнем энергетическом уровне четыре орбитали (одну s- и три р-), образуют связи, число которых не превышает четырех. Атомы элементов других периодов с большим числом орбиталей на внешнем уровне могут формировать больше связей.

3. Направленность . В соответствии с методом, химическая связь между атомами обусловлена перекрытием орбиталей, которые, за исключением s-орбиталей, имеют определенную ориентацию в пространстве, что и приводит к направленности ковалентной связи.

Направленность ковалентной связи — это такое размещение электронной плотности между атомами, которое определяется пространственной ориентацией валентных орбиталей и обеспечивает их максимальное перекрытие.

Поскольку электронные орбитали имеют различные формы и различную ориентацию в пространстве, то их взаимное перекрытие может реализоваться различными способами. В зависимости от этого различают σ-, π- и δ- связи.

Сигма-связь (σ-связь) — это такое перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется вдоль воображаемой линии, соединяющей два ядра.

Сигма-связь может образовываться за счет двух s-электронов, одного s- и одного р электрона, двух р-электронов или двух d-электронов. Такая σ-связь характеризуется наличием одной области перекрытия электронных орбиталей, она всегда одинарная, то есть образуется только одной электронной парой.

Разнообразие форм пространственной ориентации «чистых» орбиталей и гибридизованных орбиталей не всегда допускают возможность перекрывания орбиталей на оси связи. Перекрывания валентных орбиталей может происходить по обе стороны от оси связи — так называемое «боковое» перекрывания, которое чаще всего осуществляется при образовании π-связей.

Пи-связь (π-связь) — это перекрытие электронных орбиталей, при котором максимальная электронная плотность концентрируется по обе стороны от линии, соединяющей ядра атомов (т.е. от оси связи).

Пи-связь может образоваться при взаимодействии двух параллельных р-орбиталей, двух d-орбиталей или других комбинаций орбиталей, оси которых не совпадают с осью связи.


Схемы образования π-связей между условными А и В атомами при боковом перекрытии электронных орбиталей

4. Кратность. Эта характеристика определяется числом общих электронных пар, связывающих атомы. Ковалентная связь по кратности может быть одинарной (простой), двойной и тройной. Связь между двумя атомами с помощью одной общей электронной пары называется одинарной связью (простой), двух электронных пар — двойной связью, трех электронных пар — тройной связью. Так, в молекуле водорода Н 2 атомы соединены одинарной связью (Н-Н), в молекуле кислорода О 2 — двойным (В = О), в молекуле азота N 2 — тройным (N≡N). Особое значение кратность связей приобретает в органических соединениях — углеводородах и их производных: в этане С 2 Н 6 между атомами С осуществляется одинарная связь (С-С), в этилене С 2 Н 4 — двойная (С = С) в ацетилене С 2 Н 2 — тройная (C ≡ C)(C≡C).

Кратность связи влияет на энергию: с повышением кратности растет ее прочность. Повышение кратности приводит к уменьшению межъядерного расстояния (длины связи) и увеличению энергии связи.


Кратность связи между атомами углерода: а) одинарная σ-связь в этане Н3С-СН3 ; б) двойная σ+π-связь в этилене Н2С = СН2 ; в) тройная σ+π+π-связь в ацетилене HC≡CH

5. Полярность и поляризуемость . Электронная плотность ковалентной связи может по-разному располагаться в межъядерном пространстве.

Полярность — это свойство ковалентной связи, которое определяется областью расположения электронной плотности в межъядерном пространстве относительно соединенных атомов.

В зависимости от размещения электронной плотности в межъядерном пространстве различают полярная и неполярная ковалентные связи. Неполярной связью называется такая связь, при которой общее электронное облако размещается симметрично относительно ядер соединенных атомов и одинаково принадлежит обоим атомам.

Молекулы с таким типом связи называются неполярными или гомоядерными (то есть такими, в состав которых входят атомы одного элемента). Неполярная связь проявляется как правило в гомоядерных молекулах (Н 2 , Cl 2 , N 2 и т.д.) или — реже — в соединениях, образованных атомами элементов с близкими значениями электроотрицательности, например, карборунд SiC. Полярной, (или гетерополярной) называется связь, при которой общее электронное облако несимметричное и смещено к одному из атомов.

Молекулы с полярной связью называются полярными, или гетероядерными. В молекулах с полярной связью обобщенная электронная пара смещается в сторону атома с большей электроотрицательностью. В результате на этом атоме возникает некоторый частичный отрицательный заряд (δ-), который называется эффективным, а у атома с меньшей электроотрицательностью — одинаковый по величине, но противоположный по знаку частичный положительный заряд (δ+). Например, экспериментально установлено, что эффективный заряд на атоме водорода в молекуле хлорида водорода HCl — δH=+0,17, а на атоме хлора δCl=-0,17 абсолютного заряда электрона.

Чтобы определить, в какую сторону будет смещаться электронная плотность полярной ковалентной связи, необходимо сравнить электроны обоих атомов. По возрастанию электроотрицательности наиболее распространенные химические элементы размещаются в такой последовательности:

Полярные молекулы называются диполями — системами, в которых центры тяжести положительных зарядов ядер и отрицательных зарядов электронов не совпадают.

Диполь — это система, которая представляет собой совокупность двух точечных электрических зарядов, одинаковых по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга.

Расстояние между центрами притяжения называются длина диполя и обозначаются буквой l. Полярность молекулы (или связи) количественно характеризуется дипольным моментом μ, который в случае двухатомной молекулы равен произведению длины диполя на величину заряда электрона: μ=el.

В единицах СИ дипольный момент измеряется в [Кл × м] (Кулон-метры), но чаще пользуются внесистемной единицей [D] (дебай): 1D = 3,33 · 10 -30 Кл × м. Значение дипольных моментов ковалентных молекул меняется в пределах 0-4 D, а ионных — 4-11D. Чем больше длина диполя, тем более полярной является молекула.

Совместная электронное облако в молекуле может смещаться под действием внешнего электрического поля, в том числе и поля другой молекулы или иона.

Поляризуемость — это изменение полярности связи в результате смещения электронов, образующих связь, под действием внешнего электрического поля, в том числе и силового поля другой частицы.

Поляризуемость молекулы зависит от подвижности электронов, которая является тем сильнее, чем больше расстояние от ядер. Кроме того, поляризуемость зависит от направленности электрического поля и от способности электронных облаков деформироваться. Под действием внешнего поля неполярные молекулы становятся полярными, а полярные — еще более полярными, то есть в молекулах индуцируется диполь, который называется приведенным, или индуцированным диполем.


Схема образования индуцированного (приведенного) диполя из неполярной молекулы под действием силового поля полярной частицы — диполя

В отличие от постоянных, индуцированные диполи возникают лишь при действии внешнего электрического поля. Поляризация может вызывать не только поляризуемость связи, но и ее разрыв, при котором происходит переход связующего электронной пары к одному из атомов и образуются отрицательно и положительно заряженные ионы.

Полярность и поляризуемость ковалентных связей определяет реакционную способность молекул по отношению к полярным реагентам.

Свойства соединений с ковалентной связью

Вещества с ковалентными связями делятся на две неравные группы: молекулярные и атомные (или немолекулярные), которых значительно меньше, чем молекулярных.

Молекулярные соединения в обычных условиях могут находиться в различных агрегатных состояниях: в виде газов (CO 2 , NH 3 , CH 4 , Cl 2 , O 2 , NH 3), легколетучих жидкостей (Br 2 , H 2 O, C 2 H 5 OH) или твердых кристаллических веществ, большинство из которых даже при очень незначительном нагревании способны быстро плавиться и легко сублимироваться (S 8 , P 4 , I 2 , сахар С 12 Н 22 О 11 , «сухой лед» СО 2).

Низкие температуры плавления, возгонки и кипения молекулярных веществ объясняются очень слабыми силами межмолекулярного взаимодействия в кристаллах. Именно поэтому для молекулярных кристаллов не присуща большая прочность, твердость и электрическая проводимость (лед или сахар). При этом вещества с полярными молекулами имеют более высокие температуры плавления и кипения, чем с неполярными. Некоторые из них растворимы в или других полярных растворителях. А вещества с неполярными молекулами, наоборот, лучше растворяются в неполярных растворителях (бензол, тетрахлорметан). Так, йод, у которого молекулы неполярные, не растворяется в полярной воде, но растворяется в неполярной CCl 4 и малополярном спирте.

Немолекулярные (атомные) вещества с ковалентными связями (алмаз, графит, кремний Si, кварц SiO 2 , карборунд SiC и другие) образуют чрезвычайно прочные кристаллы, за исключением графита, которого имеет слоистую структуру. Например, кристаллическая решетка алмаза — правильный трехмерный каркас, в котором каждый sр 3 -гибридизованный атом углерода соединен с четырьмя соседними атомами С σ-связями. По сути весь кристалл алмаза — это одна огромная и очень прочная молекула. Аналогичное строение имеют и кристаллы кремния Si, который широко применяется в радиоэлектронике и электронной технике. Если заменить половину атомов С в алмазе атомами Si, не нарушая каркасную структуру кристалла, то получим кристалл карборунда — карбида кремния SiC — очень твердого вещества, используемого в качестве абразивного материала. А если в кристаллической решетке кремния между каждыми двумя атомами Si вставить по атому О, то образуется кристаллическая структура кварца SiO 2 — тоже очень твердого вещества, разновидность которого также используют как абразивный материал.

Кристаллы алмаза, кремния, кварца и подобные им по структуре — это атомные кристаллы, они представляют собой огромные «супермолекулы», поэтому их структурные формулы можно изобразить не полностью, а только в виде отдельного фрагмента, например:


Кристаллы алмаза, кремния, кварца

Немолекулярные (атомные) кристаллы, состоящие из соединенных между собой химическими связями атомов одного или двух элементов, относятся к тугоплавким веществам. Высокие температуры плавления обусловлены необходимостью затраты большого количества энергии для разрыва прочных химических связей при плавлении атомных кристаллов, а не слабого межмолекулярного взаимодействия, как в случае молекулярных веществ. По этой же причине многие атомные кристаллов при нагревании не плавятся, а разлагаются или сразу переходят в парообразное состояние (возгонка), например, графит сублимируется при 3700 o С.

Немолекулярные вещества с ковалентными связями нерастворимые в воде и других растворителях, большинство из них не проводит электрический ток (кроме графита, которому присуща электропроводность, и полупроводников — кремния, германия и др.).