Реферат: Методологические процедуры системного анализа. Характеристика основных этапов системного анализа Системный анализ основные этапы системного анализа

При изучении системного подхода прививается такой образ мышления, который, с одной стороны, способствует устранению излишней усложненности, а с другой - помогает руководителю уяснять сущность сложных проблем и принимать решения на основе четкого представления об окружающей обстановке. Важно структурировать задачу, очертить границы системы. Но столь же важно учесть, что системы, с которыми руководителю приходится сталкиваться в процессе своей деятельности, являются частью более крупных систем, возможно, включающих всю отрасль или несколько, порой много, компаний и отраслей промышленности, или даже все общество в целом. Далее следует сказать, что эти системы постоянно.

Изменяются, они создаются, действуют, реорганизуются, и, бывает, ликвидируются.

В большинстве случаев практического применения системного анализа для исследования свойств и последующего оптимального управления системой можно выделить следующие основные этапы :

2. Построение модели изучаемой системы.

3. Отыскание решения задачи с помощью модели.

4. Проверка решения с помощью модели.

5. Подстройка решения под внешние условия.

6. Осуществление решения.

В каждом конкретном случае этапы системного занимают различный "удельный вес" в общем объеме работ по временным, затратным и интеллектуальным показателям. Очень часто трудно провести четкие границы - указать, где оканчивается данный этап и начинается очередной.

Системный анализ не может быть полностью формализован, но можно выбрать некоторый алгоритм его проведения.

Системный анализ может выполняться в следующей последовательности :

1. Постановка проблемы - отправной момент исследования. В исследовании сложной системы ему предшествует работа по структурированию проблемы.

2. Расширение проблемы до проблематики, т.е. нахождение системы проблем, существенно связанных с исследуемой проблемой, без учета которых она не может быть решена.

3. Выявление целей: цели указывают направление, в котором надо двигаться, чтобы поэтапно решить проблему.

4. Формирование критериев. Критерий - это количественное отражение степени достижения системой поставленных перед ней целей. Критерий -это правило выбора предпочтительного варианта решения из ряда альтернативных. Критериев может быть несколько. Многокритериальность является способом повышения адекватности описания цели. Критерии должны описать по возможности все важные аспекты цели, но при этом необходимо минимизировать число необходимых критериев.

5. Агрегирование критериев. Выявленные критерии могут быть объединены либо в группы, либо заменены обобщающим критерием.

6. Генерирование альтернатив и выбор с использованием критериев наилучшей из них. Формирование множества альтернатив является творческим этапом системного анализа.

7. Исследование ресурсных возможностей , включая информационные ресурсы.

8. Выбор формализации (моделей и ограничений) для решения проблемы.

9. Построение системы.

10. Использование результатов проведенного системного исследования.

Схема алгоритма решения задач системного исследования конкретной проблемы представлена на рис. 6.1.

Рис.6.1. Алгоритм решения задач системного исследования конкретной проблемы

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственный комитет связи, информатизации и телекоммуникационных технологий Республики Узбекистан

Ташкентский Университет Информационных технологий

Самостоятельная работа

Этапы системного анализа, их основные цели, задачи

"Основы системного анализа"

Выполнила:

Хомутова А.В., 293-10 Акр

Принял: Кувнаков А.Э.

Ташкент 2013 г.

Системный анализ -- научный метод познания, представляющий собой последовательность действий по установлению структурных связей между переменными или элементами исследуемой системы. Опирается на комплекс общенаучных, экспериментальных, естественнонаучных, статистических, математических методов.

Основные задачи системного анализа могут быть представлены в виде трехуровневого дерева функций.

Рис. -- Основные задачи системного анализа

На этапе декомпозиции, обеспечивающем общее представление системы, осуществляются:

1. Определение и декомпозиция общей цели исследования и основной функции системы как ограничение траектории в пространстве состояний системы или в области допустимых ситуаций. Наиболее часто декомпозиция проводится путем построения дерева целей и дерева функций.

2. Выделение системы из среды (разделение на систему/"несистему") по критерию участия каждого рассматриваемого элемента в процессе, приводящем к результату на основе рассмотрения системы как составной части надсистемы.

3. Описание воздействующих факторов.

4. Описание тенденций развития, неопределенностей разного рода.

5. Описание системы как "черного ящика".

6. Функциональная (по функциям), компонентная (по виду элементов) и структурная (по виду отношений между элементами) декомпозиции системы.

Часто применяемые стратегии декомпозиции:

Функциональная декомпозиция. Декомпозиция базируется на анализе функций системы. При этом ставится вопрос что делает система, независимо от того, как она работает. Основанием разбиения на функциональные подсистемы служит общность функций, выполняемых группами элементов.

Декомпозиция по жизненному циклу. Признак выделения подсистем -- изменение закона функционирования подсистем на разных этапах цикла существования системы "от рождения до гибели". Рекомендуется применять эту стратегию, когда целью системы является оптимизация процессов и когда можно определить последовательные стадии преобразования входов в выходы.

Декомпозиция по физическому процессу. Признак выделения подсистем -- шаги выполнения алгоритма функционирования подсистемы, стадии смены состояний. Хотя эта стратегия полезна при описании существующих процессов, результатом ее часто может стать слишком последовательное описание системы, которое не будет в полной мере учитывать ограничения, диктуемые функциями друг другу. При этом может оказаться скрытой последовательность управления. Применять эту стратегию следует, только если целью модели является описание физического процесса как такового.

ЭТАПЫ СИСТЕМНОГО АНАЛИЗА

Постановка задачи. На этом этапе определяется следующее:

1) существует ли проблема;

2) точно формулируется проблема;

3) проводится анализ логической структуры проблемы;

4) развитие проблемы в прошлом, состояние сегодня и в будущем;

5) внешние связи проблемы;

6) принципиальная ее разрешимость.

Вопрос о том, существует ли проблема, имеет первостепенное значение, поскольку приложение огромных усилий к решению несуществующих проблем отнюдь не исключение, а весьма типичный случай. Надуманные проблемы маскируют актуальные проблемы. Правильное и точное формулирование проблемы является первым и необходимым этапом системного исследования и, как известно, может быть равносильно половине решения проблемы.

Любая проблема, как правило, возникает по двум причинам:

острая конфликтная ситуация, возникшая в результате противоречий между участниками организации, качеством и технологией, оплатой труда и компетентностью работника и т.д. Это " проблемы функционирования " . Они являются следствием неудовлетворительного управления. Необходим отлаженный механизм их разрешения, упреждения.

развитие системы вызывает " проблемы роста " . Они связаны с социально-экономическими, политическими и др. изменениями в инфраструктуре системы.

Методы (данного этапа): метод сценариев, диагностический, деревьев целей, экономического анализа.

Если проблемы своевременно не решать, то со временем они превращаются в препятствие. Поэтому правильное и точное формулирование проблемы является первым и обязательным шагом любого системного исследования.

Формулировка целей и критериев.

Определение целей, требований надсистемы;

Определение целей и ограничений среды;

Формулирование общей цели;

Определение критерия;

Композиция общего критерия из критериев подсистем.

Кроме того, достижимость целей напрямую связана с непротиворечивостью интересов всех участников системы и внешней среды, что поднимает вопрос о необходимости формирования блока совместных целей и совместных ценностей организации, в основе которой лежат цели надсистемы.

Методы: экспертных оценок ( " Дельфи " ), SWOT -анализ, деревьев целей, экономического анализа, морфологический, кибернетические модели, нормативные операционные модели (оптимизационные, имитационные).

Декомпозиция цели, определение потребностей в ресурсах.

На этом этапе происходит :

формулирование целей верхнего ранга, текущих процессов, эффективности, целей развития;

декомпозиция целей и критериев по подсистемам;

оценка обеспеченности ресурсами и их стоимость;

определение взаимозависимостей целей по выделенным подсистемам;

определение критериев важности по каждой подцели.

Методы: деревьев целей, сетевые, метод моделирования (описательные модели).

Оценка состояния внешней среды.

Основные факторы, обусловливающие кризисные ситуации на предприятии, зарождаются, как правило, во внешней среде, откуда организация черпает необходимые ресурсы.

Данный этап тесно связан с последующим выявлением альтернативных средств, что требует наиболее объективного подхода к оценке существующего и прогнозируемого состояния факторов внешней среды.

Анализ факторов внешней среды обеспечивает выявление всех неуправляемых факторов, оказывающих существенное влияние на выбор альтернатив решения проблемы.

Методы: сценариев, экспертных оценок, сетевые методы, SWOT -анализ, морфологический анализ.

V . Выявление альтернатив достижения цели. Это процесс поиска и выбора наилучших путей достижения целей. Эффективность СА, как правило, прямо пропорциональна количеству возможных альтернатив. Их сопоставление дает возможность более рационального отбора предпочтительной и (или) их комбинирования по различным фрагментам. Выбор предпочтительной альтернативы осуществляется на основе возможностей организации (кадры, техника, материалы, финансы и пр.).

Для экономических систем выбор предпочтительной альтернативы осуществляется по следующим параметрам:

Соответствие ее состоянию и требованиям окружающей среды , то есть устанавливается насколько она соответствует требованиям всех внешних субъектов организации.

Соответствие альтернативы потенциалу и возможностям организации , то есть имеет ли организация в наличии ресурсы для реализации альтернативы и каковы возможности обеспеченности ими исполнения будущей деятельности.

Приемлемость риска, заложенного в альтернативе. Управление любой деятельностью всегда осуществляется в " поле " допустимого риска " . Но иногда стремление к прорыву по какому-либо направлению требует выйти за границу допустимого риска, но это часто чревато. Оценки оправданности риска осуществляются путем определения степени реалистичности предпосылок, заложенных в альтернативе, величины потерь в случае провала и ответа на вопрос, оправдывает ли выигрыш в случае риска затраты на реализацию альтернативы.

Методы: экспертных оценок, " мозгового штурма " , матричные, экономического анализа.

VI . Оценка целей и средств. Эта работа осуществляется путем разработки моделей и проигрывания на них отдельных альтернатив.

То есть модель дает возможность установить с достаточной точностью, что произойдет с каждым возможным входом на любом этапе прохождения его через систему (имитационная модель), или описать каждую ответную реакцию системы. Общая модель такого класса - " черный ящик " , когда на вход модели подаются соответствующие параметры, а на выходе измеряются результаты, сопоставляя которые можно сделать соответствующие оценки предлагаемых альтернатив.

На этом этапе производится: 1) вычисление оценок по критерию; 2) оценка взаимозависимостей между целями; 3) оценка относительной важности целей (устанавливаются коэффициенты относительной важности); 4) оценка дефицитности и стоимости ресурсов; 5) оценка влияния внешних факторов; 6) вычисление комплексных расчетных коэффициентов относительной важности по каждому направлению (ветки дерева целей).

Влияние внешних факторов. Оценка уровня соответствия результатов предполагаемых действий поставленным целям еще не может быть основой выбора наилучшей альтернативы, так как не всегда удается установить характер поведения внешней среды, поэтому при оценке той или иной альтернативы необходимо рассмотреть три варианта поведения внешней среды.

Оптимистический - когда элементы внешней среды будут действовать в заранее предлагаемом направлении (все будет работать на пользу выбранного варианта);

Пессимистический - когда элементы внешней среды будут действовать в противоположном альтернативе направлении (все будет работать против выбранного варианта).

Вероятностный - когда поведение внешней среды определяется наличием информации, экспертными оценками, а иногда и интуицией разработчиков альтернатив.

Методы: экспертных оценок (поскольку СА, как правило, имеет дело с неструктуризованными или слабо структуризованными проблемами, то получение оценок специалистов и их обработка представляются необходимым этапом СА большинства проблем ); морфологический, экономического анализа; кибернетические, имитационные, оптимизационные модели.

VII . Выявление возможных последствий реализации выбранной альтернативы.

Это этап выработки прогноза, для чего строится модель прогноза состояния системы и параметров окружающей среды.

Реализация любой альтернативы может привести к результатам, связанным и несвязанным с достижением поставленной цели. Результат реализации альтернативы - это многомерное явление, то есть он состоит из многих качественно различных параметров, которые через различные внутренние и внешние связи взаимно определяют состояния друг друга. А поэтому прогнозирование последствий - это должно быть как можно более объективное определение этих взаимозависимостей между параметрами реализуемой альтернативы.

Наиболее распространенным методом прогноза является экстраполирование изменения параметров системы (изменение параметров в будущем исходя из известных тенденций этих изменений в прошедшем периоде ).

То есть, при выявлении возможных последствий реализации выбранной альтернативы необходимо провести анализ устойчивых тенденций развития системы; прогноз развития и изменения окружающей среды; предсказать появление новых факторов, оказывающих влияние на развитие системы; анализ обеспеченности ресурсами в будущем; анализ возможных изменений целей и критериев.

Методы: сценариев, экспертных оценок ( " Дельфи " ), сетевые, экономического анализа, статистический, моделирования.

VIII . Структуризация проектируемой системы. Исходной базой этой стадии являются цели и задачи, сгруппированные по функциональным подсистемам (блокам, модулям), так как для каждой подсистемы необходимо определить ведущее подразделение (действующий функциональный отдел). Определение основных функциональных подсистем основывается на достижении конечных целей в области производственных, научно-технических, экономических и социальных целей, входящих в общее дерево целей альтернативы.

Методы: деревьев целей, матричные, сетевые методы, кибернетические модели.

IX . Диагноз существующей системы.

Проблемы управления, требующие применения СА, возникают в реально функционирующих производственных системах. Поэтому, когда уже выполнены предыдущие этапы и осуществляется практическая реализация выбранной альтернативы, всегда у руководства будет возникать вопрос: " Каково состояние выполнения программы? " . Для ответа на него возникает необходимость в диагностическом анализе работы органов управления, направленном на выявление их возможностей, устранение недостатков, диспропорций ( " узких мест " ), а также на лучшее ориентирование системы на достижение поставленных целей.

На этом этапе смотрят состояние выполнения программы. Выявление актуальных проблем развития системы и ближайших целей - это предмет диагностического обследования и анализа состояния органов управления реализующих альтернативу.

Производится: моделирование экономического и технологического процессов; расчет потенциальной и фактической мощностей; анализ потерь мощностей; выявление недостатков организации производства и управления.

Порядок диагноза: обнаружить отклонение от заданной программы или неудовлетворительное состояние процесса исполнения; определить причину появления этих факторов; принять решение об изменениях программы, состава органов управления; реализовать намеченные изменения.

Первый шаг диагноза - типичный и своевременный учет отклонений, его цель - установить величину отклонений. После этого проводится диагностика отклонений - определяются причины и разрабатываются меры по устранению.

Методы: диагностические, матричные, экономического анализа, кибернетические модели.

X . Построение программы реализации выбранной альтернативы.

Этап формирования программы включает следующие работы:

1. Формирование мероприятий, проектов.

2. Определение очередности выполнения мероприятий.

3. Распределение сфер деятельности.

4. Распределение сфер компетенции.

5. Разработка плана мероприятий в рамках ограниченных ресурсов и времени. анализ декомпозиия синтез экономический

6. Распределение мероприятий по подразделениям и исполнителям.

Методы: матричные, сетевые, экономического анализа, описательные модели, нормативные операционные модели.

XI . Реализация программы и контроль исполнения. Организация исполнения альтернативы представляет собой определенную систему, которая включает уяснение и детализацию альтернативы; подбор и расстановку исполнителей, их инструктаж и обучение; обеспечение нормальной работы исполнителей; контроль за исполнителями и учет результатов их работы, корректировку программы, регулирование и координацию работы в целом.

Контроль является самой продолжительной стадией управления, так как осуществляется с этапа постановки задачи и кончается завершением реализации программ и подведения итогов. При правильной организации системы контроля исполнения субъект реализует следующие цели:

получает сведения о ходе выполнения заданий, чтобы своевременно обеспечить выполнение упреждающих корректирующих действий;

убеждается в эффективности распоряжения с тем, чтобы произвести корректировку при выявлении отклонений;

побуждает работников к эффективному выполнению задания.

Примечание. Неформальные методы : метод сценариев, метод экспертных оценок ( " Дельфи " ), диагностические методы; графические методы : метод деревьев целей, матричные методы, сетевые методы; количественные методы : методы экономического анализа, морфологические методы, статистические методы; методы моделирования: кибернетические модели, описательные модели, нормативные операционные модели (оптимизационные, имитационные, игровые).

Размещено на Allbest.ru

...

Подобные документы

    Методология анализа сложных объектов, изучения и познания процессов. Основные принципы системного подхода к анализу проблем и основные понятия о системах. Декомпозиция, анализ подпроблем и их решение, выявление альтернатив и выбор оптимальных решений.

    контрольная работа , добавлен 04.08.2010

    Характеристика простых и сложных систем, их основные признаки. Общие принципы и этапы экономико-математического моделирования. Назначение рабочего этапа системного анализа - выявление ресурсов и процессов, композиция целей, формулирование проблемы.

    контрольная работа , добавлен 11.10.2012

    Использование системного анализа для подготовки и обоснования управленческих решений по многофакторным проблемам. Возникновение синергетики как науки о законах построения организации, возникновения упорядоченности, развитии и самоусложнении системы.

    реферат , добавлен 21.01.2015

    Области применения системного анализа, его место, роль, цели и функции в современной науке. Понятие и содержание методик системного анализа, его неформальные методы. Особенности эвристических и экспертных методов исследования и особенности их применения.

    курсовая работа , добавлен 20.05.2013

    Использование инструментария системного анализа для решения проблем на пути достижения цели - завести аквариум с пираньями. Описание предметной области. Построение дерева целей. Эффективные мероприятия в деревьях мероприятий, сетевой график их реализации.

    курсовая работа , добавлен 07.10.2013

    Теория системного анализа техносферы. Общая последовательность формализации и моделирования опасных процессов в техносфере. Особенность формализации и моделирования процесса возникновения происшествий в техносфере вообще и в человекомашинных системах.

    реферат , добавлен 06.03.2011

    Основные задачи оценки экономических явлений и процессов. Проведение детерминированного факторного анализа и приемы математического моделирования факторной системы. Суть метода последовательного элиминирования факторов. Оперативный контроль затрат.

    шпаргалка , добавлен 08.12.2010

    Общие принципы системного анализа. Основные этапы построения эконометрических моделей и использования их для прогнозирования. Экстраполяция трендов и ее использование в анализе. Правила составления информации подсистем. Модель "спрос-предложение".

    реферат , добавлен 24.01.2011

    Моделирование. Детерминизм. Задачи детерминированного факторного анализа. Способы измерения влияния факторов в детерминированном анализе. Расчёт детерминированных экономико-математических моделей и методов факторного анализа на примере РУП "ГЗЛиН".

    курсовая работа , добавлен 12.05.2008

    Определение, цели и задачи эконометрики. Этапы построения модели. Типы данных при моделировании экономических процессов. Примеры, формы и моделей. Эндогенные и экзогенные переменные. Построение спецификации неоклассической производственной функции.

Теория оптимальных систем позволяет оценить тот предел который может быть достигнут в оптимальной системе сравнить ее с показателями действующей не оптимальной системы и выяснить целесообразно ли в рассматриваемом случае заниматься разработкой оптимальной системы. Для автоматически управляемого процесса автоматически управляемой системы различают две стадии оптимизации: статическую и динамическую. Статическая оптимизация решает вопросы создания и реализации оптимальной модели процесса а динамическая...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

Волгоградский Государственный Технический Университет

Кафедра «Системы автоматизированного проектирования и поискового

конструирования»

Контрольная работа

по дисциплине: «Системный анализ».

Выполнил: студент 3 курса ФПИК

группы АУЗ – 361с Тюляева И.А.

номер зачетной книжки 20161639

Проверил: асс. Дмитриев А.С.

Волгоград 2012

Этапы системного анализа, их основные цели, задачи

Цели и задачи оптимизации технологических систем.

Бурное развитие техники, интенсификация производства, необходимость увеличения производительности труда выдвинули перед учеными инженерами работающими в области автоматики, задачи создания высококачественных систем автоматического управления (САУ), которые способны решать все более сложные задачи управления и заменить человека в сложных сферах его деятельности.

Параллельно с развитием техники развивалась техническая кибернетика, являющаяся базой современной автоматики и телемеханики. Одним из важнейших направлений технической кибернетики является теория оптимальных автоматических систем, которая зародилась в конце 40-х годов.

Под оптимальной САУ понимается наилучшая в известном смысле система. Решение проблемы оптимальности позволит довести до максимума эффективность использования производственных агрегатов, увеличить производительность и качество продукции, обеспечить экономию энергии и ценного сырья и т.д. В различных отраслях техники управления рассмотрения проблем оптимальности систем приводит к задачам построения оптимальных по быстродействию САУ, оптимальной фильтрации

сигнала принимаемого на фоне помех, построения оптимальных прогнозирующих устройств, оптимальных методов распознавания образов, оптимальной организации автоматического поиска и т.д. Между всеми этими различными на первый взгляд задачами имеется внутренняя связь, которая является базой для построения единой теории оптимальных систем.

Критерии оптимальности, на основе которых строится система, могут быть различны и зависят от специфики решаемой задачи. Это могут быть простота, экономичность, надежность. Для процессов САУ критериями могут быть время регулирования, вид кривой переходного процесса, точность воспроизведения входного сигнала при наличии помех и т.п.

Значение теории оптимальных систем для практики исключительно велико. Без нее трудно создавать оптимальные САУ. Теория оптимальных систем позволяет оценить тот предел, который может быть достигнут в оптимальной системе, сравнить ее с показателями действующей не оптимальной системы и выяснить, целесообразно ли в рассматриваемом случае заниматься разработкой оптимальной системы.

Принципы оптимального управления получают все большее распространение на практике. Они позволили создать новые автоматические регуляторы, и достигнуть существенного процесса в их основных свойствах. Несмотря на полученные результаты ряд важнейших проблем оптимального управления остается еще не решенным. К ним относятся проблемы построения систем, близким к оптимальным, синтез оптимальных управляющих устройств и др.

Оптимизация любого процесса заключается в нахождении оптимума рассматриваемой функции или соответственно оптимальных условий проведения данного процесса.

Для оценки оптимума необходимо прежде всего выбрать критерии оптимизации. В зависимости от конкретных условий в качестве критерия оптимизации можно взять технологический критерий, например, максимальный съем продукции с единицы объема аппарата; экономический критерий – минимальная стоимость продукта при заданной производительности и др.

На основании выбранного критерия оптимизации составляется так называемая целевая функция или функция выгоды, представляющая собой зависимость критерия оптимизации от параметров, влияющих на его значение. Задача оптимизации сводится к нахождению экстремума целевой функции. Следует иметь в виду, что проблемы оптимизации возникают в тех случаях, когда необходимо решать компромиссную задачу преимущественного улучшения двух или более количественных характеристик, различным образом влияющих на переменные процесса, балансируя одну против другой. Например, эффективность процесса балансирует против производительности; качество - против количества; запас единиц продукции – против реализации их; производительность – против затрат и т.д.

Для автоматически управляемого процесса, автоматически управляемой системы, различают две стадии оптимизации: статическую и динамическую.

Статическая оптимизация решает вопросы создания и реализации оптимальной модели процесса, а динамическая - создание и реализация системы оптимального управления процессом.

В зависимости от характера рассматриваемых математических моделей принимаются различные математические методы оптимизации. Все они сводятся к тому, чтобы найти минимум или максимум, описываемой уравнением целевой функции.

При выборе метода оптимизации необходимо учитывать могущие возникнуть вычислительные трудности: объем вычислений, сложность самого метода, размерность задач и т.п. Целесообразно производить по возможности предварительные оценки положения оптимума какой-либо конкретной задачи. Для этого необходимо детально рассмотреть исходные данные и основные соотношения между переменными. Для сокращения размерности задачи часто используется прием сведения нескольких переменных к наиболее существенным.

Целесообразно применение однотипных вычислительных схем. При использовании вычислительных машин с помощью стандартных подпрограмм удается упростить расчеты и лишь для целевых функций требуется создавать специальную программу.

Не представляется возможным изложить твердые правила упрощения задач для всех возможных случаев; необходимо каждый раз подходить к выбору метода оптимизации и решению задачи, исходя из конкретного существа самой задачи.

Основы системного анализа процессов и аппаратов

Системный анализ- это методология исследования любых объектов средством представления их в качестве систем и анализа этих систем. Система – это совокупность взаимосвязанных элементов, объединенных для достижения поставленной цели. Для выявления элементов производят декомпозицию системы. Технологическая система – совокупность технологических процессов и средств для их реализации.

Любую технологическую систему расчленяют на 4 основных элемента:

  • собственно технологический процесс;
  • аппарат для реализации процесса;
  • средства контроля и управления;
  • информационные связи между тремя предыдущими подсистемами.

В зависимости от масштабов технологические системы бывают:

  • малые системы (один типовой процесс, один типовой аппарат);
  • большие системы - совокупность малых систем.

Процессы в системном анализе бывают детерминированные и стохастические. Детерминированные характеризуются однозначной непрерывной зависимостью между входными и выходными величинами. при этом каждому значению входной величины соответствует определенное значение выходной величины. В стохастических процессах изменение определяющих величин происходит беспорядочно хаотично и чаще всего дискретно. Значение выходной величины не находится в соответствии с входной.

Основные этапы системного анализа.

Этап 1.

  • анализ современного состояния объекта. Изучение физико-химических особенностей, конструктивное и аппаратное оформление системы, технологических особенностей;
  • средства контроля и управления, технико-экономические и экологическо-социальные особенности системы.

Этап 2: Постановка задачи оптимизации.

  • формирование исходного числового материала для математического моделирования (по сырью, реагентам, энергии, сбыту, количеству);
  • формулирование критерия оптимизации.

Этап 3: Выбор математической модели.

  • выбор типовой математической модели;
  • формулирование рабочей гипотезы о работе механизма процесса;
  • принятие допущений, идеализирующих реальную систему;
  • формирование алгоритмов, реализующих математические модели.

Этап 4: Идентификация математической модели.

  • проверка эксперимента;
  • сравнение результатов эксперимента и расчета.

Этап 5: Анализ результатов моделирования.

  • анализ основных связей независимых переменных с входными величинами и критериями оптимизации (анализ статических характеристик);
  • анализ чувствительности возможных критериев оптимизации и отсев несущественно влияющих связей;
  • анализ допустимых решений задач оптимизации;
  • анализ экономической целесообразности автоматической оптимизации системы

Этап 6: Уточнение задачи оптимизации.

  • анализ возможности реализации алгоритма оптимизации существующим математическим обеспечением;
  • формирование алгоритма оптимизации. Составление качественной оценки контрольного варианта.

Этап 7: Анализ результатов эксперимента.

  • выявление свойств оптимальных режимов системы;
  • разработка структуры системы автоматической оптимизации;
  • разработка задания на создание алгоритмов оптимизации, использующих свойства оптимальных режимов.

Список литературы.

  1. Системный анализ и принятие решений: Словарь – справочник: Учебное пособие для вузов/ Под ред. В. Н. Волковой, В. Н. Козлова. – М.: Высшая школа, 2004. – 616 с.

Алгебра отношений как универсальный аппарат теории систем

Реляционная алгебра

Алгебру отношений часто называют реляционной алгеброй, основная идея которой состоит в том, что коль скоро отношения являются множествами, то средства манипулирования отношениями могут базироваться на традиционных теоретико-множественных операциях, дополненных некоторыми специальными операциями, специфичными для баз данных.

Существует много подходов к определению реляционной алгебры, которые различаются набором операций и способами их интерпретации, но в принципе, более или менее равносильны. Мы опишем немного расширенный начальный вариант алгебры, который был предложен Коддом. В этом варианте набор основных алгебраических операций состоит из восьми операций, которые делятся на два класса – теоретико-множественные операции и специальные реляционные операции. В состав теоретико-множественных операций входят операции:

  • объединения отношений;
  • пересечения отношений;
  • взятия разности отношений;
  • прямого произведения отношений.

Специальные реляционные операции включают:

  • ограничение отношения;
  • проекцию отношения;
  • соединение отношений;
  • деление отношений.

Кроме того, в состав алгебры включается операция присваивания, позволяющая сохранить в базе данных результаты вычисления алгебраических выражений, и операция переименования атрибутов, дающая возможность корректно сформировать заголовок (схему) результирующего отношения.

Общая интерпретация реляционных операций

Если не вдаваться в некоторые тонкости, то почти все операции предложенного выше набора обладают очевидной и простой интерпретацией.

При выполнении операции объединения двух отношений производится отношение, включающее все кортежи, входящие хотя бы в одно из отношений-операндов.

Операция пересечения двух отношений производит отношение, включающее все кортежи, входящие в оба отношения-операнда.

Отношение, являющееся разностью двух отношений включает все кортежи, входящие в отношение – первый операнд, такие, что ни один из них не входит в отношение, являющееся вторым операндом.

При выполнении прямого произведения двух отношений производится отношение, кортежи которого являются конкатенацией (сцеплением) кортежей первого и второго операндов.

Результатом ограничения отношения по некоторому условию является отношение, включающее кортежи отношения-операнда, удовлетворяющее этому условию.

При выполнении проекции отношения на заданный набор его атрибутов производится отношение, кортежи которого производятся путем взятия соответствующих значений из кортежей отношения-операнда.

При соединении двух отношений по некоторому условию образуется результирующее отношение, кортежи которого являются конкатенацией кортежей первого и второго отношений и удовлетворяют этому условию.

У операции реляционного деления два операнда - бинарное и унарное отношения. Результирующее отношение состоит из одноатрибутных кортежей, включающих значения первого атрибута кортежей первого операнда таких, что множество значений второго атрибута (при фиксированном значении первого атрибута) совпадает со множеством значений второго операнда.

Операция переименования производит отношение, тело которого совпадает с телом операнда, но имена атрибутов изменены.

Поскольку результатом любой реляционной операции (кроме операции присваивания) является некоторое отношение, можно образовывать реляционные выражения, в которых вместо отношения-операнда некоторой реляционной операции находится вложенное реляционное выражение.

Замкнутость реляционной алгебры и операция переименования

Каждое отношение характеризуется схемой (или заголовком) и набором кортежей (или телом). Поэтому, если действительно желать иметь алгебру, операции которой замкнуты относительно понятия отношения, то каждая операция должна производить отношение в полном смысле, т.е. оно должно обладать и телом, и заголовком. Только в этом случае будет действительно возможно строить вложенные выражения.

Заголовок отношения представляет собой множество пар <имя-атрибута, имя-домена>. Если посмотреть на общий обзор реляционных операций, то видно, что домены атрибутов результирующего отношения однозначно определяются доменами отношений-операндов. Однако с именами атрибутов результата не всегда все так просто.

Например, представим себе, что у отношений-операндов операции прямого произведения имеются одноименные атрибуты с одинаковыми доменами. Каким был бы заголовок результирующего отношения? Поскольку это множество, в нем не должны содержаться одинаковые элементы. Но и потерять атрибут в результате недопустимо. А это значит, что в этом случае вообще невозможно корректно выполнить операцию прямого произведения.

Аналогичные проблемы могут возникать и в случаях других двуместных операций. Для их разрешения в состав операций реляционной алгебры вводится операция переименования. Ее следует применять в любом случае, когда возникает конфликт именования атрибутов в отношениях – операндах одной реляционной операции. Тогда к одному из операндов сначала применяется операция переименования, а затем основная операция выполняется уже безо всяких проблем.

Особенности теоретико-множественных операций реляционной алгебры

Хотя в основе теоретико-множественной части реляционной алгебры лежит классическая теория множеств, соответствующие операции реляционной алгебры обладают некоторыми особенностями.

Начнем с операции объединения (все, что будет говориться по поводу объединения, переносится на операции пересечения и взятия разности). Смысл операции объединения в реляционной алгебре в целом остается теоретико-множественным. Но если в теории множеств операция объединения осмысленна для любых двух множеств-операндов, то в случае реляционной алгебры результатом операции объединения должно являться отношение. Если допустить в реляционной алгебре возможность теоретико-множественного объединения произвольных двух отношений (с разными схемами), то, конечно, результатом операции будет множество, но множество разнотипных кортежей, т.е. не отношение. Если исходить из требования замкнутости реляционной алгебры относительно понятия отношения, то такая операция объединения является бессмысленной.

Все эти соображения приводят к появлению понятия совместимости отношений по объединению: два отношения совместимы по объединению в том и только в том случае, когда обладают одинаковыми заголовками. Более точно, это означает, что в заголовках обоих отношений содержится один и тот же набор имен атрибутов, и одноименные атрибуты определены на одном и том же домене.

Если два отношения совместимы по объединению, то при обычном выполнении над ними операций объединения, пересечения и взятия разности результатом операции является отношение с корректно определенным заголовком, совпадающим с заголовком каждого из отношений-операндов. Напомним, что если два отношения «почти» совместимы по объединению, т.е. совместимы во всем, кроме имен атрибутов, то до выполнения операции типа соединения эти отношения можно сделать полностью совместимыми по объединению путем применения операции переименования.

Заметим, что включение в состав операций реляционной алгебры трех операций объединения, пересечения и взятия разности является очевидно избыточным, поскольку известно, что любая из этих операций выражается через две других. Тем не менее, Кодд в свое время решил включить все три операции, исходя из интуитивных потребностей потенциального пользователя системы реляционных БД, далекого от математики.

Другие проблемы связаны с операцией взятия прямого произведения двух отношений. В теории множеств прямое произведение может быть получено для любых двух множеств, и элементами результирующего множества являются пары, составленные из элементов первого и второго множеств. Поскольку отношения являются множествами, то и для любых двух отношений возможно получение прямого произведения. Но результат не будет отношением! Элементами результата будут являться не кортежи, а пары кортежей.

Поэтому в реляционной алгебре используется специализированная форма операции взятия прямого произведения – расширенное прямое произведение отношений. При взятии расширенного прямого произведения двух отношений элементом результирующего отношения является кортеж, являющийся конкатенацией (или слиянием) одного кортежа первого отношения и одного кортежа второго отношения.

Но теперь возникает второй вопрос – как получить корректно сформированный заголовок отношения-результата? Очевидно, что проблемой может быть именование атрибутов результирующего отношения, если отношения-операнды обладают одноименными атрибутами.

Эти соображения приводят к появлению понятия совместимости по взятию расширенного прямого произведения. Два отношения совместимы по взятию прямого произведения в том и только в том случае, если множества имен атрибутов этих отношений не пересекаются. Любые два отношения могут быть сделаны совместимыми по взятию прямого произведения путем применения операции переименования к одному из этих отношений.

Следует заметить, что операция взятия прямого произведения не является слишком осмысленной на практике. Во-первых, мощность ее результата очень велика даже при допустимых мощностях операндов, а во-вторых, результат операции не более информативен, чем взятые в совокупности операнды. Основной смысл включения операции расширенного прямого произведения в состав реляционной алгебры состоит в том, что на ее основе определяется действительно полезная операция соединения.

По поводу теоретико-множественных операций реляционной алгебры следует еще заметить, что все четыре операции являются ассоциативными. Т. е., если обозначить через OP любую из четырех операций, то (A OP B) OP C = A (B OP C), и следовательно, без введения двусмысленности можно писать A OP B OP C (A, B и C - отношения, обладающие свойствами, требуемыми для корректного выполнения соответствующей операции). Все операции, кроме взятия разности, являются коммутативными, т.е. A OP B = B OP A.

Список литературы.

  1. Антонов А. В. Системный анализ. Учебник для вузов/А. В. Антонов – М.: Высшая школа, 2004. – 454 с.
  2. Лукиных И. Г. Основы системного анализа: Конспект лекций по дисциплинам «Системный анализ» и «Теория систем и системный анализ». – Киров: Изд-во ВятГУ, 2006. – 90 с.
  3. Анфилатов В. С. и др. Системный анализ в управлении: Учебное пособие/ В. С. Анфилатов, А. А. Емельянов, А. А. Кукушкин; Под ред. А. А. Емельянова. – М.: Финансы и статистика, 2002. – 368 с.: ил.
  4. Системный анализ и принятие решений: Словарь – справочник: Учебное пособие для вузов/ Под ред. В. Н. Волковой, В. Н. Козлова. – М.: Высшая школа, 2004. – 616 с.

Задачи

1. Каковы подсистемы системы "ВУЗ"? Какие связи между ними существуют? Описать их внешнюю и внутреннюю среду, структуру. Классифицировать (с пояснениями) подсистемы. Описать вход, выход, цель, связи указанной системы и ее подсистем. Нарисовать топологию системы.

2. Привести пример некоторой системы, указать ее связи с окружающей средой, входные и выходные параметры, возможные состояния системы, подсистемы. Пояснить на этом примере (т.е. на примере одной из задач), возникающих в данной системе конкретный смысл понятий "решить задачу" и "решение задачи". Поставить одну проблему для этой системы.

3. Привести морфологическое, информационное и функциональное описания одной-двух систем. Являются ли эти системы плохо структурируемыми, плохо формализуемыми системами? Как можно улучшить их структурированность и формализуемость?

4. Составить спецификации систем (описать системы), находящихся в режиме развития и в режиме функционирования. Указать все атрибуты системы.

5. Привести примеры систем, находящихся в отношении: а) рефлексивном, симметричном, транзитивном; б) несимметричном, рефлексивном, транзитивном; в) нетранзитивном, рефлексивном, симметричном; г) нерефлексивном, симметричном, транзитивном; д) эквивалентности.

6. Найти и описать две системы, у которых есть инвариант. Изоморфны ли эти системы?

Задача 1.

Подсистемами системы ВУЗ могут быть такие системы как деканат, бухгалтерия, студенческий совет и др.

Цели данных подсистем:

  • деканат – управления факультетом;
  • бухгалтерия – обеспечение финансово-экономической жизни ВУЗа;
  • студенческий совет – обеспечение студенческого самоуправления) и др.

Примерами параметров системы могут быть:

  • входные – уровень подготовки поступающих, уровень проведения вступительных экзаменов;
  • выходные – уровень профессиональной подготовки и адаптационные возможности молодых специалистов после окончания ВУЗа;
  • внутренние – уровень и качество научной методической работы, уровень организации самостоятельной работы студентов, профессиональный уровень и состав преподавателей ВУЗа.

Системы – «ВУЗ», «Деканат», «Бухгалтерия», «Студенческий совет» можно отнести:

  • по взаимоотношениям со средой – к открытым;
  • по происхождению – к смешанным (организационного типа);
  • по описанию – к смешанным;
  • по управлению – к комбинированным;
  • по функционированию – типа непараметрических систем.

Задача 2.

Система «Налоговая инспекция». Информации может быть типа:

  • входная и выходная информация:
  • информация о физических и юридических лицах;
  • заявления;
  • акты;
  • декларации о доходах;
  • уставы и учредительские договоры;
  • свидетельства о регистрации, лицензии;
  • ИНН и даты регистрации, реестры и др.;
  • балансы;
  • информация о платежах;
  • иски, справки и др.;
  • отчёты, приказы и др.;
  • юридические документы и правовые акты и др.;
  • сведения о финансовых операциях и др.;
  • внутрисистемная информация:
  • информация об отдельных физических и юридических лицах;
  • заявления;
  • акты;
  • декларации о доходах;
  • сведения о доходах;
  • материалы к балансу;
  • иски, справки и др.;
  • постановления, приказы, заключения и др.;
  • письма, запросы, инструкции и др.;
  • нормативно-справочная информация;
  • сведения о финансовых операциях и др.

Основные системные функции:

  • учёт налогоплательщиков;
  • анализ налоговых платежей;
  • организация и проведение необходимых налоговых мероприятий;
  • внедрение систем новых информационных технологий;
  • совершенствование функционирования налоговых систем и др.

Основные системные цели системы:

  • обеспечение соблюдения правовых актов и законов;
  • обеспечение учета платежей и плательщиков, правильности исчисления платежей;
  • обеспечение взаимодействия с другими органами;
  • обеспечение правильного применения штрафных санкций;
  • обеспечение представления отчётности и документации другим органам.

Это открытая, смешанного происхождения система, основные переменные которой можно описывать также смешанным образом (количественно и качественно), в частности, собираемость налогов – это обычно количественно описываемая характеристика; структуру налоговой инспекции можно описать и качественно, и количественно. По типу описания закона (законов) функционирования системы, эту систему можно отнести к не параметризованным в целом, хотя возможно выделение подсистем различного типа и описания, в частности, подсистемы анализа, информационного обеспечения, работы с юридическими и физическими лицами, юридический отдел и др.

Основные управляющие параметры в системе – параметры, стимулирующие своевременную и полную уплату налогов, прибыльность предприятий, а не штрафные санкции. Например, налог на прибыль - основной управляющий фактор. В налоговых системах имеются два основных типа управляющих параметров – фискального и стимулирующего характера.

Задача 3.

Пример 1. При износе механической детали или электронного блока теряется информация (потери вещества могут быть либо незначительными, либо вовсе отсутствовать). Заменить деталь исправной означает восполнить информационную потерю системы (в данном случае при помощи системы более высокого порядка). Априорная информация заключена в остальных деталях (блоках) системы, которые предполагаются исправными и без которых новая деталь бесполезна.

Пример 2. Человек воспринимает образную и семантическую информацию, поступающую от рецепторов, благодаря понятийному и категорийному аппарату, выработанному ранее. Язык эмоций категорий искусства не может быть выражен ни на каком естественном или формальном языке. Искусство требует для восприятия априорных данных, т.е. определенной подготовки. Фраза «Истинное искусство понятно всем» означает только то, что эстетическое наслаждение, порождаемое некоторыми видами искусства, основано на весьма распространенных и легко усваиваемых понятиях, возникающих у человека в ранние годы жизни в процессе общения с природой и другими людьми. Ассоциация возникает в процессе формирования личного опыта: “Запах может напоминать нам весь цветок, но только если он был нам ранее известен”. Общественное мнение формируется на основании обобщенных наблюдений и укоренившихся представлений.

Существует экстремальная зависимость количества воспринимаемой информации от количества априорной информации. При нулевой и бесконечной априорной информации из носителя черпается нулевая информация. Существует некоторое значение априорной информации, при котором усваивается максимальная информация. Для максимального усвоения, морфология носителя априорной информации должна быть достаточно близкой к морфологии носителя новой информации (элементы новой детали должны сопрягаться с остальными деталями машины).
Результатом структурного, функционального и информационного описания системы должно быть полное представление о механизме ее функционирования. Особенности системного подхода в данном случае заключаются в следующем:

  • при системном рассмотрении объектов мы получаем информацию о связи их возможных состояний с состояниями других объектов;
  • применение системного подхода в отдельных случаях дает неискаженное представление об истинном механизме функционирования системы, что является лучшей альтернативой распространенному методу «черного ящика»;
  • при рассмотрении практически любого объекта обнаруживаются определенные ограничения, накладываемые на его возможные состояния. Эти ограничения являются важным фактором, воздействующим на процесс управления объектом. Применение системного подхода позволяет максимально уточнить модель ограничений состояния объекта путем учета ограничений, накладываемых структурой и механизмом функционирования системы на возможные состояния объекта;
  • при решении задач планирования и оптимизации относительно сложных систем применение системного подхода дает решение, оптимальное именно при учете системного характера рассматриваемого объекта, которое может качественно отличаться от решения, полученного без применения системного подхода.

Задача 4.

Деятельность (работа) системы может происходить в двух основных режимах: развитие (эволюция) и функционирование. Функционированием называется деятельность, работа системы без смены (главной) цели системы. Это проявление функции системы во времени. Развитием называется деятельность системы со сменой цели системы. При функционировании системы явно не происходит качественного изменения инфраструктуры системы; при развитии системы ее инфраструктура качественно изменяется.

Развитие – борьба организации и дезорганизации в системе, она связана с накоплением и усложнением информации, ее организации.

Пример. Информатизация страны в ее наивысшей стадии – всемерное использование различных баз знаний, экспертных систем, когнитивных методов и средств, моделирования, коммуникационных средств, сетей связи, обеспечение информационной а, следовательно, любой безопасности и др.; это революционное изменение, развитие общества. Компьютеризация общества, региона, организации без постановки новых актуальных проблем, т.е. «навешивание компьютеров на старые методы и технологии обработки информации» – это функционирование, а не развитие.

Задача 5.

а) рефлексивном, симметричном, транзитивном;

Пример: разделение контингента учащихся конкретной школы на классы.

б) несимметричном, рефлексивном, транзитивном;

Пример: на множестве вещественных чисел отношения «больше» и «меньше» являются отношениями строгого порядка, а «больше или равно» и «меньше или равно» — нестрогого.

в) нетранзитивном, рефлексивном, симметричном;

Пример: отношение толерантности, используется при классификациях информации в базах знаний.

г) нерефлексивном, симметричном, транзитивном;

Пример: выражение «2*2» - нечетное число, т.к 4 – четное.

д) эквивалентности.

Пример: выписанное врачом лекарство, фактически в рецепте указывается класс эквивалентных лекарств, поскольку врач не может указать совершенно конкретный экземпляр упаковки таблеток или ампул. Т.е. всевозможные лекарства разбиты на классы отношением эквивалентности.

Задача 6.

Если рассматривать процесс познания в любой предметной области, познания любой системы, то глобальным инвариантом этого процесса является его спиралевидность. Следовательно, спираль познания – это инвариант любого процесса познания, независимый от внешних условий и состояний (хотя параметры спирали и его развертывание, например, скорость и крутизна развертывания зависят от этих условий). Цена – инвариант экономических отношений, экономической системы; она может определять и деньги, и стоимость, и затраты. Понятие «система» – инвариант всех областей знания.

При определенных условиях практически любая величина может сохраняться. Например, скорость при равномерном движении, масса при малых скоростях, ускорение при постоянной силе. В состоянии инфляции реальная стоимость доллара падает. Доход, привязанный к уровню цен, симметричен относительно инфляционных процессов. Условия сохранения величин в перечисленных примерах специфичны, а области их сохранения ограничены. Это частные инварианты.

Другие похожие работы, которые могут вас заинтересовать.вшм>

10946. 9.7 KB
В зависимости от этого различают по следующие виды исследований рынка: Разведочное исследование маркетинговое исследование проводимое с целью сбора предварительной информации необходимой для наилучшего определения проблем и выдвигаемых предположений гипотез в рамках которых ожидается реализация маркетинговой деятельности а также для уточнения терминологии и установления приоритетов среди задач исследований. Наиболее часто усилия исследователей концентрируются на таких объектах как Объем рынка Объем рынка это измеренный...
16911. Место и роль государственно-частного партнерства в системе экономических категорий: попытка системного анализа 10.23 KB
Москва Место и роль государственно-частного партнерства в системе экономических категорий: попытка системного анализа Государственно-частное партнерство ГЧП в мировой экономической теории и практике понимается в двух смыслах. В качестве форм ГЧП выступают: государственный контракт на выполнение работ или оказание услуг с инвестиционными обязательствами частного сектора аренда государственной и муниципальной собственности смешанные предприятия соглашения о разделе продукции концессии. ГЧП является одним из краеугольных камней теории...
559. Цели и задачи БЖД 7.29 KB
Цели и задачи БЖД Условия труда и жизни человека защита его здоровья волновали человечество с древнейших времен. Однако с приходом двадцатого столетия с началом эпохи научнотехнического прогресса вопросами безопасности деятельности человека и его взаимодействия с окружающей средой вплотную занялись ученые. Дисциплина Безопасность жизнедеятельности призвана обобщить знания необходимые для обеспечения комфортного состояния и безопасности человека во взаимодействии с окружающей средой. Безопасность жизнедеятельности это наука изучающая...
7686. Предмет экология, цели и задачи 19.59 KB
Фотосинтез Синтез органических веществ из неорганических протекает в зеленой растительности под действие солнечной энергии. Поток энергии в экосистеме заключается в 1м законе термодинамики. Окисления органического вва кислорода сопровождается разрывом химических связей и высвобождением энергии в форме тепла – называется клеточное дыхание.
18769. Оценка недвижимости, ее цели, задачи и назначение 20.87 KB
Правовая среда функционирования объекта недвижимости формируется системой органов законодательной исполнительной и судебной власти и их институтов во взаимодействии с хозяйствующими субъектами собственниками имущества и рынками с применением властных полномочий на основании нормативных актов. Правовое понятие недвижимости является наиболее важным. Можно не иметь представления об экономическом содержании недвижимости и в то же время быть активным участником отношений связанных с нею: владеть недвижимостью покупать и продавать ее...
10641. Предмет, задачи, цели, содержание экологии 76.59 KB
Предмет и задачи дисциплины Термин экология от греческого oikos – жилище местообитание введен в литературу в 1866 г. Реймерс в словаресправочнике Природопользование 1990 указывает что экология – это: 1 часть биологии биоэкология изучающая отношения организмов особей популяций биоценозов и т. Тот же автор в другой работе отмечает что для экологии характерен широкий системный межотраслевой взгляд Экология – это совокупность отраслей знания исследующих взаимодействие между биологически значимыми отдельностями и между ними и...
7910. Смысл, цели и задачи инноватики в образовании 10.99 KB
Все остальные изменения модернизация образования изменение продолжительности среднего или высшего образования доступ школ к Интернету и т. Развитие обусловлено не только заказом общества и личности на изменение системы образования но и необходимостью педагогического обеспечения связи прошлого и будущего. Педагогическая инноватика наука изучающая природу закономерности возникновения и развития педагогических инноваций в отношении субъектов образования а также обеспечивающая связь педагогических традиций с проектированием...
7222. Цели, задачи, функции идентификации товаров 18.41 KB
Цели задачи функции идентификации товаров Идентификация это отождествление установление совпадения чеголибо с чемлибо. Проведение качественной идентификации очень сложный емкий длительный и часто дорогостоящий процесс. Цель идентификации выявление и подтверждение подлинности конкретного вида и наименования товара а также соответствия определенным требованиям или информации о нем указанной на маркировке и или в товарно-сопроводительных документах. Для достижения этих целей необходима дальнейшая разработка теоретических основ и...
11336. ПОНЯТИЕ, СУЩНОСТЬ, ЦЕЛИ И ЗАДАЧИ УГОЛОВНОГО ПРОЦЕССА 93.88 KB
Актуальность избранной темы заключается в том, что уголовный процесс является одним из основных институтов права в государстве, в условиях гуманизации законодательства в целом вопрос о понятии уголовного процесса, его сущности, предназначении как института права нуждается в исследовании.
20061. Краткая история развития охраны труда. Цели и задачи дисциплины 15 KB
Цели и задачи дисциплины Наивысшим приоритетом всякой деятельности являются человеческая жизнь и здоровье об этом свидетельствует и логика экономического развития. В течение 19 века большинство европейских стран постепенно приняло законодательство адекватное новым тенденциям в развитии промышленности в Германии и Франции акты об охране труда были приняты и начали действовать к середине века. В 1890 году на конференции в Берлине представители пятнадцати государств приняли первые международные нормы труда и утвердили положение о надзоре за...

Любая научная, исследовательская и практическая деятельность проводится на базе методов, методик и методологий.
Метод - это прием или способ действия.
Методика - это совокупность методов, приемов проведения какой-либо работы.
Методология - это совокупность методов, правила распределения и назначения методов, а также шаги работы и их последовательность.
Имеются свои методы, методики и методологии и у системного анализа. Однако, в отличие от классических наук, системный анализ находится в стадии развития и еще не имеет устоявшегося, общепризнанного «инструментария».
Кроме того, каждая наука имеет свою методологию, поэтому дадим еще одно определение.
Методология - это совокупность методов, применяемых в какой-либо науке.
В каком-то смысле можно говорить и о методологии системного анализа, хотя это пока еще очень рыхлая, «сырая» методология.

1. Системность
Прежде чем рассматривать системную методологию, надо разобраться с понятием «системный». Сегодня широко используются такие понятия как «системный анализ», «системный подход», «теория систем», «принцип системности» и др. При этом их не всегда различают и часто применяют как синонимы.
Наиболее общим понятием, которое обозначает все возможные проявления систем, является «системность». Ю.П. Сурмин предлагает рассматривать структуру системности в трех аспектах (рис. 1): системная теория, системный подход и системный метод.

Рис. 1. Структура системности и составляющие её функции.

1. Системная теория (теория систем) реализует объясняющую и систематизирующую функции: дает строгое научное знание о мире систем; объясняет происхождение, устройство, функционирование и развитие систем различной природы.
2. Системный подход следует рассматривать как некоторый методологический подход человека к действительности, представляющий собой некоторую общность принципов, системное мировоззрение.
Подход - это совокупность приемов, способов воздействия на кого-нибудь, в изучении чего-нибудь, ведении дела и т. д.
Принцип — а) основное, исходное положение какой-либо теории; б) наиболее общее правило деятельности, которое обеспечивает его правильность, но не гарантирует однозначность и успех.
Итак, подход - это некоторая обобщенная система представлений о том, как должна выполняться та или иная деятельность (но не детальный алгоритм действия), а принцип деятельности - множество некоторых обобщенных приемов и правил.
Кратко суть системного подхода можно определить так:
Системный подход - это методология научного познания и практической деятельности, а также объяснительный принцип, в основе которых лежит рассмотрение объекта как системы.
Системный подход заключается в отказе от односторонне аналитических, линейно-причинных методов исследования. Основной акцент при его применении делается на анализе целостных свойств объекта, выявлении его различных связей и структуры, особенностей функционирования и развития. Системный подход представляется достаточно универсальным подходом при анализе, исследовании, проектировании и управлении любых сложных технических, экономических, социальных, экологических, политических, биологических и других систем.
Назначение системного подхода заключается в том, что он направляет человека на системное видение действительности. Он заставляет рассматривать мир с системных позиций, точнее - с позиций его системного устройства.
Таким образом, системный подход, будучи принципом познания, выполняет ориентаци-онную и мировоззренческую функции, обеспечивая не только видение мира, но и ориентацию в нем.
3. Системный метод реализует познавательную и методологическую функции. Он выступает как некоторая интегральная совокупность относительно простых методов и приемов познания, а также преобразования действительности.
Конечная цель любой системной деятельности заключается в выработке решений, как на стадии проектирования систем, так и при управлении ими. В этом контексте системный анализ можно считать сплавом методологии общей теории систем, системного подхода и системных методов обоснования и принятия решений.

2. Естественнонаучная методология и системный подход
Системный анализ не является чем-то принципиально новым в исследовании окружающего мира и его проблем - он базируется на естественнонаучном подходе, корни которого уходят в прошлые века.
Центральное место в исследовании занимают два противоположных подхода: анализ и синтез.
Анализ предусматривает процесс разделения целого на части. Он весьма полезен в том случае, если требуется выяснить, из каких частей (элементов, подсистем) состоит система. Посредством анализа приобретаются знания. Однако при этом нельзя понять свойства системы в целом.
Задача синтеза - построение целого из частей. Посредством синтеза достигается понимание.
В исследовании любой проблемы можно указать несколько главных этапов:
1) постановка цели исследования;
2) выделение проблемы (выделение системы): выделить главное, существенное, отбросив малозначимое, несущественное;
3) описание: выразить на едином языке (уровне формализации) разнородные по своей природе явления и факторы;
4) установление критериев: определить, что значит «хорошо» и «плохо» для оценивания полученной информации и сравнения альтернатив;
5) идеализация (концептуальное моделирование): ввести рациональную идеализацию проблемы, упростить ее до допустимого предела;
6) декомпозиция (анализ): разделить целое на части, не теряя свойств целого;
7) композиция (синтез): объединить части в целое, не теряя свойств частей;
8) решение: найти решение проблемы.
В отличие от традиционного подхода, при котором проблема решается в строгой последовательности вышеприведенных этапов (или в другом порядке), системный подход состоит в многосвязности процесса решения: этапы рассматриваются совместно, во взаимосвязи и диа-лектическом единстве. При этом возможен переход к любому этапу, в том числе и возврат к постановке цели исследования.
Главным признаком системного подхода является наличие доминирующей роли сложного, а не простого, целого, а не составляющих элементов. Если при традиционном подходе к исследованию мысль движется от простого к сложному, от частей - к целому, от элементов - к системе, то в системном подходе, наоборот, мысль движется от сложного к простому, от целого к составным частям, от системы к элементам. При этом эффективность системного подхода тем выше, чем к более сложной системе он применяется.

3. Системная деятельность
Всякий раз, когда ставится вопрос о технологиях системного анализа, сразу же возникают непреодолимые трудности, связанные с тем, что устоявшихся технологий системного анализа в практике нет. Системный анализ в настоящее время представляет собой слабосвязанную совокупность приемов и методов неформального и формального характера. В системном мышлении пока чаще господствует интуиция.
Ситуация усугубляется еще и тем, что, несмотря на полувековую историю развития системных идей, нет однозначности в понимании самого системного анализа. Ю.П. Сурминым выделяются следующие варианты понимания сущности системного анализа:
Отождествление технологии системного анализа с технологией научного исследования. При этом для самого системного анализа в этой технологии практически не находится места.
Сведение системного анализа к системному конструированию. По сути, системно-аналитическая деятельность отождествляется с системотехнической деятельностью.
Очень узкое понимание системного анализа, сведение его к одной из его составляющих, например к структурно-функциональному анализу.
Отождествление системного анализа с системным подходом в аналитической деятельности.
Понимание системного анализа как исследования системных закономерностей.
В узком смысле под системным анализом довольно часто понимают совокупность математических методов исследования систем.
Сведение системного анализа к совокупности методологических средств, которые используются для подготовки, обоснования и осуществления решений по сложным проблемам.
Таким образом, то, что называют системным анализом, представляет собой недостаточно интегрированный массив методов и приемов системной деятельности.
Сегодня упоминание о системном анализе можно найти во многих работах, связанных с управлением, решением проблем. И хотя его вполне справедливо рассматривают как эффектив-ный метод изучения объектов и процессов управления, методики системной аналитики в решении конкретных управленческих задач практически отсутствуют. Как пишет Ю.П. Сурмин: «Системный анализ в управлении представляет ныне не развитую практику, а нарастающие ментальные декларации, не имеющие какого-либо серьезного технологического обеспечения».

4. Подходы к анализу и проектированию систем
При анализе и проектировании действующих систем различных специалистов могут интересовать разные аспекты: от внутреннего устройства системы до организации управления в ней. В связи с этим условно выделяют следующие подходы к анализу и проектированию: 1) системно-элементный, 2) системно-структурный, 3) системно-функциональный, 4) системно-генетический, 5) системно-коммуникативный, 6) системно-управленческий и 7) системно-информационный.
1. Системно-элементный подход. Непременной принадлежностью систем являются их компоненты, части, именно то, из чего образовано целое и без чего оно невозможно.
Системно-элементный подход отвечает на вопрос, из чего (каких элементов) образована система.
Этот подход иногда называли «перечислением» системы. Его вначале пытались применить для исследования сложных систем. Однако первые же попытки применить такой подход к исследованию систем управления предприятиями и организациями показали, что «перечислить» сложную систему практически невозможно.
Пример. В истории разработки автоматизированных систем управления был такой случай. Разработчики написали несколько десятков томов обследования системы, но так и не могли приступить к созданию АСУ, поскольку не могли гарантировать полноты описания. Руководитель разработки вынужден был уволиться, а впоследствии стал изучать системный подход и популяризировать его.
2. Системно-структурный подход. Компоненты системы являют собой не набор случайных бессвязных объектов. Они интегрированы системой, являются компонентами именно данной системы.
Системно-структурный подход направлен на выявление компонентного состава системы и связей между ними, обеспечивающих целенаправленное функционирование.
При структурном исследовании предметом исследований, как правило, являются состав, структура, конфигурация, топология и т. п.
3. Системно-функциональный подход. Цель выступает в системе как один из важных системообразующих факторов. Но цель требует действий, направленных на ее достижение, которые есть не что иное, как ее функции. Функции по отношению к цели выступают как способы ее достижения.
Системно-функциональный подход направлен на рассмотрение системы с точки зре-ния ее поведения в среде для достижения целей.
При функциональном исследовании рассматриваются: динамические характеристики, устойчивость, живучесть, эффективность, т. е. все то, что при неизменной структуре системы зависит от свойств ее элементов и их отношений.
4. Системно-генетический подход. Любая система не является неизменной, раз и навсе-гда заданной. Она не абсолютна, не вечна главным образом потому, что ей присущи внутренние противоречия. Каждая система не только функционирует, но и движется, развивается; она имеет свое начало, переживает время своего зарождения и становления, развития и расцвета, упадка и гибели. А это значит, что время является непременным атрибутом системы, что любая система исторична.
Системно-генетический (или системно-исторический) подход направлен на изучение системы с точки зрения ее развития во времени.
Системно-генетический подход определяет генезис - возникновение, происхождение и становление объекта как системы.
5. Системно-коммуникативный подход. Каждая система всегда является элементом (подсистемой) другой, более высокого уровня, системы, и сама, в свою очередь, образована из подсистем более низкого уровня. Иначе говоря, система связана множеством отношений (коммуни-каций) с самыми различными системными и несистемными образованиями.
Системно-коммуникативный подход направлен на изучение системы с точки зрения ее отношений с другими, внешними по отношению к ней, системами.
6. Системно-управленческий подход. Система постоянно испытывает на себе возмущающие воздействия. Это — прежде всего внутренние возмущения, являющиеся результатом внутренней противоречивости любой системы. Это и внешние возмущения, которые далеко не всегда благоприятны: недостаток ресурсов, жесткие ограничения и т. д. Между тем система живет, функционирует, развивается. Значит, наряду со специфическим набором компонентов, внутренней организацией (структурой) и т. д., есть и другие системообразующие, системосо-храняющие факторы. Эти факторы обеспечения устойчивости жизнедеятельности системы называют управлением.
Системно-управленческий подход направлен на изучение системы с точки зрения обес
печения ее целенаправленного функционирования в условиях внутренних и внешних возмущений.
7. Системно-информационный подход. Управление в системе немыслимо без передачи, получения, хранения и обработки информации. Информация - это способ связи компонентов системы друг с другом, каждого из компонентов с системой в целом, а системы в целом - со средой. В силу сказанного, нельзя раскрыть сущность системности без изучения ее информационного аспекта.
Системно-информационный подход направлен на изучение системы с точки зрения передачи, получения, хранения и обработки данных внутри системы и в связи со средой.

5. Методики системного анализа
Методология системного анализа представляет собой довольно сложную и пеструю совокупность принципов, подходов, концепций и конкретных методов, а также методик.
Наиболее важную часть методологии системного анализа составляют ее методы и методики (для простоты в дальнейшем обобщенно будем говорить о методиках).

5.1. Обзор методик системного анализа
Имеющиеся методики системного анализа еще не получили достаточно убедительной классификации, которая была бы принята единогласно всеми специалистами. Например, Ю. И. Черняк делит методы системного исследования на четыре группы: неформальные, графические, количественные, и моделирование. Достаточно глубокий анализ методик различных авторов представлен в работах В.Н. Волковой, а также Ю.П. Сурмина.
В качестве простейшего варианта методики системного анализа можно рассматривать такую последовательность:
1) постановка задачи;
2) структуризация системы;
3) построение модели;
4) исследование модели.
Другие примеры и анализ этапов первых методик системного анализа приведены в книге, где рассматриваются методики ведущих специалистов системного анализа 70-х и 80-х годов прошлого столетия: С. Оптнера, Э. Квейда, С. Янга, Е.П. Голубкова. Ю.Н. Черняка.
Примеры: Этапы методик системного анализа по С. Оптнеру:
1. Идентификация симптомов.
2. Определение актуальности проблемы.
3. Определение цели.
4. Вскрытие структуры системы и ее дефектных элементов.
5. Определение структуры возможностей.
6. Нахождение альтернатив.
7. Оценка альтернатив.
8. Выбор альтернативы.
9. Составление решения.
10. Признание решения коллективом исполнителей и руководителей.
11. Запуск процесса реализации решения
12. Управление процессом реализации решения.
13. Оценка реализации и ее последствий.

Этапы методик системного анализа по С. Янгу:
1. Определение цели системы.
2. Выявление проблем организации.
3. Исследование проблем и постановка диагноза
4. Поиск решения проблемы.
5. Оценка всех альтернатив и выбор наилучшей из них.
6. Согласование решений в организации.
7 Утверждение решения.
8. Подготовка к вводу.
9. Управление применением решения.
10. Проверка эффективности решения.

Этапы методик системного анализа по Ю.И. Черняку:
1. Анализ проблемы.
2. Определение системы.
3. Анализ структуры системы.
4. Формирование общей цели и критерия.
5. Декомпозиция цели и выявление потребности в ресурсах и процессах.
6. Выявление ресурсов и процессов - композиция целей.
7. Прогноз и анализ будущих условий.
8. Оценка целей и средств.
9. Отбор вариантов.
10. Диагноз существующей системы.
11. Построение комплексной программы развития.
12. Проектирование организации для достижения целей.

Из анализа и сопоставления этих методик видно, что в них в той или иной форме представлены такие этапы:
выявление проблем и постановки целей;
разработка вариантов и модели принятия решения;
оценка альтернатив и поиска решения;
реализация решения.
Кроме того, в некоторых методиках имеются этапы оценки эффективности решений. В наиболее полной методике Ю.И. Черняка особо предусмотрен этап проектирования организации для достижения цели.
При этом различные авторы акцентируют свое внимание на разных этапах, соответственно более подробно их детализируя. В частности, основное внимания уделяется следующим этапам:
разработке и исследованию альтернатив принятия решений (С. Оптнер, Э. Квейд), выбору решения (С. Оптнер);
обоснованию цели и критериев, структуризации цели (Ю.И. Черняк, С. Оптнер, С. Янг);
управлению процессом реализации уже принятого решения (С. Оптнер, С. Янг).
Поскольку выполнение отдельных этапов может занимать достаточно много времени, возникает необходимость большей их детализации, разделения на подэтапы и более четкого определения конечных результатов выполнения подэтапов. В частности, в методике Ю.И. Черняка каждый из 12 этапов разделен на подэтапы, которых в общей сложности - 72.
Из других авторов методик системного анализа можно назвать Э.А. Капитонова и Ю.М. Плотницкого.
Примеры: Э.А. Капитонов выделяет следующие последовательные этапы системного анализа.
1. Постановка целей и основных задач исследования.
2. Определение границ системы с целью отделения объекта от внешней среды, разграничения его внутренних и внешних связей.
3. Выявление сути целостности.
Близкий подход использует и Ю. М. Плотницкий, который рассматривает системный анализ как совокупность шагов по реализации методологии системного подхода в целях получения информации о системе. Он выделяет в системном анализе 11 этапов.
1. Формулировка основных целей и задач исследования.
2. Определение границ системы, отделение ее от внешней среды.
3. . Составление списка элементов системы (подсистем, факторов, переменных и т. д.).
4. Выявление сути целостности системы.
5. Анализ взаимосвязанных элементов системы.
6. Построение структуры системы.
7. Установление функций системы и ее подсистем.
8. Согласование целей системы и каждой подсистемы.
9. Уточнение границ системы и каждой подсистемы.
10. Анализ явлений эмерджентности.
11. Конструирование системной модели.

5.2. Разработка методик системного анализа
Конечная цель системного анализа - оказать помощь в понимании и решении имеющейся проблемы, что сводится к поиску и выбору варианта решения проблемы. Результатом будет выбранная альтернатива либо в виде управленческого решения, либо в виде создания новой системы (в частности, системы управления) или реорганизации старой, что опять же является управленческим решением.
Неполнота информации о проблемной ситуации затрудняет выбор методов ее формализованного представления и не позволяет сформировать математическую модель. В этом случае возникает необходимость в разработке методик проведения системного анализа.
Необходимо определить последовательность этапов системного анализа, рекомендовать методы для выполнения этих этапов, предусмотреть при необходимости возврат к предыдущим этапам. Такая последовательность определенным образом выделенных и упорядоченных этапов и подэтапов в сочетании с рекомендованными методам и приемами их выполнения представляет собой структуру методики системного анализа.
Практики видят в методиках важный инструмент для решения проблем своей предметной области. И хотя к сегодняшнему дню накоплен большой их арсенал, но, к сожалению, следует признать, что разработка универсальных методов и методик не представляется возможной. В каждой предметной области, для различных типов решаемых проблем системному аналитику приходится разрабатывать свою методику системного анализа на базе множества принципов, идей, гипотез, методов и методик, накопленных в области теории систем и системного анализа.
Авторы книги рекомендуют при разработке методики системного анализа прежде всего определить тип решаемой задачи (проблемы). Затем, если проблема охватывает несколько областей: выбор целей, совершенствование оргструктуры, организацию процесса принятия и реализации решении, выделить в ней эти задачи и разработать методики для каждой из них.

5.3. Пример методики системного анализа предприятия
В качестве примера современной методики системного анализа рассмотрим некую обобщенную методику анализа предприятия.
Предлагается следующий перечень процедур системного анализа, который может быть рекомендован менеджерам и специалистам по экономическим информационным системам.
1. Определить границы исследуемой системы (см. выделение системы из окружающей среды).
2. Определить все подсистемы, в которые входит исследуемая система в качестве части.
Если выясняется воздействие на предприятие экономической среды, именно она и будет той надсистемой, в которой следует рассматривать его функции (см. иерархичность). Исходя из взаимосвязанности всех сфер жизни современного общества, любой объект, в частности, предприятие, следует изучать в качестве составной части многих систем - экономических, политических, государственных, региональных, социальных, экологических, международных. Каждая из этих надсистем, например экономическая, в свою очередь имеет немало компонентов, с которыми связано предприятие: поставщики, потребители, конкуренты, партнеры, банки и т. д. Эти же компоненты входят одновременно и в другие надсистемы - социокультурную, экологическую и т. п. А если еще учесть, что каждая из этих систем, а также каждый из их компонентов имеют свои специфические цели, противоречащие друг другу, то становится ясной необходимость сознательного изучения среды, окружающей предприятие (см. расширение проблемы до проблематики). В противном случае вся совокупность многочисленных влияний, оказываемых надсистемами на предприятие, будет казаться хаотичной и непредсказуемой, исключая возможность разумного управления им.
3. Определить основные черты и направления развития всех надсистем, которым принадлежит данная система в частности, сформулировать их цели и противоречия между ними.
4. Определить роль исследуемой системы в каждой надсистеме, рассматривая эту роль как средство достижения целей надсистемы.
Следует рассмотреть при этом два аспекта:
идеализированную, ожидаемую роль системы с точки зрения надсистемы, т. е. те функции, которые следовало бы выполнять, чтобы реализовать цели надсистемы;
реальную роль системы в достижении целей надсистемы.
Например, с одной стороны, оценка потребностей покупателей в конкретном виде товаров, их качестве и количестве, а с другой - оценка параметров товаров, реально выпускаемых конкретным предприятием.
Определение ожидаемой роли предприятия в потребительской среде и его реальной роли, а также их сравнение, позволяют понять многие причины успеха или неудачи компании, особенности его работы, предвидеть реальные черты ее будущего развития.
5. Выявить состав системы, т. е. определить части, из которых она состоит.
6. Определить структуру системы, представляющую собой совокупность связей между ее компонентами.
7. Определить функции активных элементов системы, их «вклад» в реализацию роли системы в целом.
Принципиально важным является гармоническое, непротиворечивое сочетание функций разных элементов системы. Эта проблема особенно актуальна для подразделений, цехов крупных предприятий, чьи функции часто во многом «не состыкованы», недостаточно подчинены общему замыслу.
8. Выявить причины, объединяющие отдельные части в систему, в целостность.
Они носят название интегрирующих факторов, к которым в первую очередь относится человеческая деятельность. В ходе деятельности человек осознает свои интересы, определяет цели, осуществляет практические действия, формируя системы средств для достижения целей. Исходным, первичным интегрирующим фактором является цель.
Цель в любой сфере деятельности представляет собой сложное сочетание различных противоречивых интересов. В пересечении подобных интересов, в своеобразной их комбинации заключается истинная цель. Всестороннее познание ее позволяет судить о степени устойчивости системы, о ее непротиворечивости, целостности, предвидеть характер ее дальнейшего развития.
9. Определить все возможные связи, коммуникации системы с внешней средой.
Для действительно глубокого, всестороннего изучения системы недостаточно выявить ее связи со всеми подсистемами, которым она принадлежит. Необходимо еще познать такие системы во внешней среде, которым принадлежат компоненты исследуемой системы. Так, следует определить все системы, которым принадлежат работники предприятия - профсоюзы, политические партии, семьи, системы социокультурных ценностей и этических норм, этнические группы и г. д. Необходимо также хорошо знать связи структурных подразделений и работников предприятия с системами интересов и целей потребителей, конкурентов, поставщиков, зарубежных партнеров и пр. Нужно также видеть связь между используемыми на предприятии технологиями и «пространством» научно-технического процесса и т. и. Осознание органического, хотя и противоречивого единства всех систем, окружающих предприятие, позволяет понимать причины его целостности, предотвращать процессы, ведущие к дезинтеграции.
10. Рассмотреть исследуемую систему в динамике, в развитии.
Для глубокого понимания любой системы нельзя ограничиваться рассмотрением коротких промежутков времени ее существования и развития. Целесообразно по возможности исследовать всю ее историю, выявить причины, побудившие создать эту систему, определить иные системы, из которых она вырастала и строилась. Также важно изучать не только историю системы или динамику ее нынешнего состояния, но и попытаться, используя специальные приемы, увидеть развитие системы в будущем, т. е. прогнозировать ее будущие состояния, проблемы, возможности.
Необходимость динамического подхода к исследованию систем легко проиллюстрировать сравнением двух предприятий, у которых в какой-то момент времени совпали значения одного из параметров, например, объем продаж. Из этого совпадения совсем не вытекает, что предприятия занимают на рынке одинаковое положение: одно из них может набирать силу, двигаться к расцвету, а другое, наоборот, переживать спад. Поэтому судить о любой системе, в частности, о предприятии нельзя лишь по «моментальной фотографии» по одному значению какого-либо параметра; необходимо исследовать изменения параметров, рассмотрев их в динамике.
Изложенная здесь последовательность процедур системного анализа не является обязательной и закономерной. Обязательным является скорее сам перечень процедур, чем их последовательность. Единственное правило заключается в целесообразности многократного возвращения в ходе исследования к каждой из описанных процедур. Только это является залогом глубокого и всестороннего изучения любой системы.

Резюме
1. Любая научная, исследовательская и практическая деятельность проводится на базе методов (приемов или способов действия), методик (совокупности методов и приемов проведения какой-либо paботы) и методологий (совокупности методов, правил распределения и назначения методов, а также шагов работы и их последовательности).
2. Наиболее общим понятием, которое обозначает все возможные проявления систем, является «системность», которую предлагается рассматривать в трех аспектах:
а) системная теория дает строгое научное знание о мире систем и объясняет происхождение, устройство, функционирование и развитие систем различной природы;
б) системный подход — выполняет ориентационную и мировоззренческую функции, обеспечивает не только видение мира, но и ориентацию в нем;
в) системный метод - реализует познавательную и методологическую функции.
3. Системный анализ не является чем-то принципиально новым в исследовании окружающего мира и его проблем - он базируется на естественнонаучном подходе. В отличие от традиционного подхода, при котором проблема решается в строгой последовательности вышеприведенных этапов (или в другом порядке), системный подход состоит в многосвязности процесса решения.
4. Главным признаком системного подхода является наличие доминирующей роли сложного, а не простого, целого, а не составляющих элементов. Если при традиционном подходе к исследованию мысль движется от простого к сложному, от частей - к целому, от элементов - к системе, то при системном подходе, наоборот, мысль движется от сложного к простому, от, целого к составным частям, от системы к элементам.
5. При анализе и проектировании действующих систем различных специалистов могут интересовать разные аспекты - от внутреннего устройства системы до организации управления, в ней, что порождает следующие подходы к анализу и проектированию; системно-элементный, системно-структурный, системно-функциональный, системно-генетический, системно-коммуникативный, системно-управленческий и системно-информационный.
6. Методология системного анализа представляет совокупность принципов, подходов, концепций и конкретных методов, а также методик.


2014

Дидактическое содержание курса:

информационное обеспечение, информационные системы, базы данных, системы управления базами данных; жизненный цикл информационной системы; внешнее проектирование, основные этапы проектирования информационных систем, структурная методология, функциональное проектирование SADT – технологии; основные требования к организации диалога и представлению данных; концептуальное, логическое и физическое проектирование баз данных; модель данных «сущности-связи», реляционная система, сетевая и иерархическая модели данных; языки описания данных и языки манипулирования данными в системах управления базами данных; физическая организация данных, методы доступа; многозадачные и многопользовательские информационные системы; расписания и протоколы; защита и секретность данных.


Основные понятия теории систем

Под термином система будем понимать множество элементов, находящихся в отношениях и связях между собой, которое образует определенную целостность, единство.

Множество существующих вне системы элементов, которые оказывают влияние на систему, или, наоборот, на которые воздействует система, называют внешней средой системы.

Если элементы какой-либо системы сами являются системами, то их обычно называют подсистемами данной системы.

Любая система, в свою очередь, может являться элементом другой системы более высокого уровня (надсистемы).

Характеристики и свойства систем

Природа систем может быть самой разнообразной. Существуют системы материальные, абстрактные (понятия, гипотезы, теории…), социальные, технические, информационные, биологические, педагогические и т.п. Но у всех систем единый набор характеристик, хотя значения самих характеристик разные.

Любая система имеет:

1. Цели создания (существования) системы;

2. Совокупность связей и отношений между частями целого, необходимых для достижения цели (структуру);

3. Внешние связи (с другими системами);

4. Ресурсы, потребляемые системой (входы) - информационные, материальные, энергетические;

5. Продукты, вырабатываемые системой (выходы);

6. Функционирование системы (поведение).

Принято делить системы на сложные и простые. Следует отметить, что понятие сложности системы окончательно еще не сформулировано, Отличительными чертами внутренней сложности организации системы считаются сложность структуры и множество внутренних состояний, потенциально оцениваемых по проявлениям системы, а также сложность управления в системе. Внешняя сложность организации системы характеризуется сложностью взаимоотношений с окружающей средой. Одна и та же система может быть представлена разными структурами в зависимости от стадии познания объектов или процессов, от аспекта их рассмотрения, цели создания. При этом по мере развития исследований или в ходе проектирования структура системы может измениться

Выделим важные свойства систем:

ü Согласно определению, главным свойством системы является ее целостность, то есть появление таких новых свойств, которых нет у каждой ее части в отдельности.

ü Основное свойство сложных систем – это наличие цели.
Любая система создается для достижения каких-то целей. Большие системы, как правило, многоцелевые. Под влиянием внешних условий и с течением времени цели могут меняться.

ü Каждая система создается в интересах системы более высокого уровня.

ü Важнейшим свойством сложных систем является их способность к управлению и самоуправлению. Управление нужно для более эффективного выполнения целей.

ü Системы могут обмениваться материей, энергией и информацией.

ü Для сложных систем характерна неоднородность частей, например, по составу и функциям.

ü В процессе своей жизни системы проходят 4 значимых этапа: зарождение, развитие, старение, гибель.


Структуры систем

Структуры систем бывают разной топологии (или же пространственной структуры). Рассмотрим основные топологии структур систем. Соответствующие схемы приведены на рисунках ниже.

Линейная структура:

Иерархическая (древовидная) структура:


Сетевая структура:

Матричная структура (табличная):


Кроме указанных основных типов структур используются и другие, образующиеся с помощью их корректных комбинаций - соединений и вложений.

Например, «вложение друг в друга» плоскостных матричных структур может привести к более сложной структуре - структуре пространственной матричной (например, вещества кристаллической структуры

Структура типа кристаллической (пространственно-матричной):

Этапы проведения системного анализа

Системный анализ - система понятий, методов и технологий для изучения, описания, реализации систем различной природы и характера, междисциплинарных проблем; это система общих законов, методов, приемов исследования таких систем.

Основы системного анализа заложил русский ученый, философ, экономист и врач Александр Александрович Богданов (1873-1928).

Он предположил, что в вопросах организации различных больших систем в природе, обществе, технике есть много общего, и самые разные системы окружающего мира можно изучать одинаковыми методами.

В основе системного анализа лежит системный подход к изучению объектов, в основе которого лежит рассмотрение любых объектов как систем.

Обобщая исследования ученых в области системного анализа, можно выделить следующие этапы системного анализа различных объектов как систем:

1. формулировка целей, их приоритетов и проблем исследования;

2. определение и уточнение ресурсов исследования;

3. выделение системы (от окружающей среды) с помощью ресурсов;

4. определение и описание подсистем;

5. определение и описание целостности (связей) подсистем и их элементов;

6. анализ взаимосвязей подсистем;

7. построение структуры системы;

8. установление функций системы и её подсистем;

9. согласование целей системы с целями подсистем;

10. анализ (испытание) целостности системы;

11. анализ и оценка системного эффекта.

Системы управления

В 1948 году американский ученый Норберт Винер (1894-1964) сформулировал основные положения новой науки, названной им кибернетикой. Он ввел в рассмотрение новую категорию - «управление».

Совокупность управляющих воздействий, направлен­ных на достижение поставленной цели, называется управлением. Таким образом, управление предполагает, что существует некоторый орган, вырабатывающий управляющие воздействия. Такой управляющий орган принято называть системой управления. Объект управления, на изменение состояния которого направлены управляющие воздействия, называют управляемой системой.

Чтобы цель управления была достигнута, в систему управления должна поступать информация о состоянии управляемой системы. Информация о состоянии управляемой системы позволяет скорректировать управляющие воздействия.

Информационные системы

Информационная система (в контексте управления) представляет собой коммуникационную систему по сбору, передаче, хранению и переработке информации об объекте управления.

Информационная система (ИС), как правило, включает следующие компоненты:

1. функциональные компоненты;

2. компоненты системы обработки данных;

3. организационные компоненты.

Под функциональными компонентами понимается система функций управления – полный набор взаимосвязанных во времени и пространстве работ по управлению, необходимых для достижения поставленных перед управляемой системой.

Системы обработки данных предназначены для информационного обслуживания специалистов системы управления, принимающих управленческие решения. Компонентами этой системы являются: информационное обеспечение , программное обеспечение, техническое обеспечение, правовое обеспечение, лингвистическое обеспечение.

Выделение организационной компоненты обусловлено особой значимостью человеческого фактора.

Жизненный цикл информационной системы состоит из нескольких этапов: анализ, проектирование, реализация, внедрение, сопровождение. Рассмотрим две модели ЖЦ – каскадную и спиральную:

Положительные стороны применения каскадного подхода заключаются в следующем:

ü на каждом этапе формируется законченный набор проектной документации, отвечающий критериям полноты и согласованности;

ü выполняемые в логичной последовательности этапы работ позволяют планировать сроки завершения всех работ и соответствующие затраты.

Однако, в процессе использования каскадного подхода обнаруживается ряд его недостатков, вызванных прежде всего тем, что реальный процесс создания информационной системы никогда полностью не укладывается в такую жесткую схему. В процессе создания системы постоянно возникает потребность в возврате к предыдущим этапам и уточнении или пересмотре ранее принятых решений. Для преодоления перечисленных проблем была предложена спиральная модель жизненного цикла, делающая упор на начальные этапы ЖЦ : анализ и проектирование.

На этих этапах реализуемость технических решений проверяется путем создания прототипов . Каждый виток спирали соответствует созданию фрагмента или версии системы, на нем уточняются цели и характеристики проекта, определяется его качество, и планируются работы следующего витка спирали. Таким образом, углубляются и последовательно конкретизируются детали проекта, и в результате выбирается обоснованный вариант, который доводится до реализации.

Первым видом прототипов является модель системы в графическом виде (ниже будут рассмотрены SADT –модели), доступном для понимания пользователями. Из таких диаграмм становится понятна общая архитектура системы.

Вторым видом прототипов являются макеты экранных форм , позволяющие согласовать поля базы данных и функции конкретных пользователей.

Третьим видом прототипов являются работающие экранные формы , т.е. уже частично запрограммированные. Это позволяет опробовать программу в действии. Как правило, это вызывает новый поток замечаний и предложений.

В соответствии с этапами ЖЦ информационной системы можно выделить несколько категорий специалистов, обеспечивающих этот ЖЦ: системные аналитики, программисты, пользователи-специалисты в конкретной предметной области.