Взаимодействие двух параллельных токов. Закон ампера, взаимодействие параллельных токов. Примеры решения задач

Взаимодействие неподвижных зарядов описывается законом Кулона. Однако закон Кулона недостаточен для анализа взаимодействия движущихся зарядов. В опытах Ампера впервые появилось сообщение о том, что движущиеся заряды (токи) создают в пространстве некоторое поле, приводя к взаимодействию этих токов. Было установлено, что токи противоположных направлений отталкиваются, а одного направления – притягиваются. Поскольку оказалось, что поле тока, действует на магнитную стрелку точно так же, как и поле постоянного магнита, то это поле тока называли магнитным. Поле тока называется магнитным полем. Впоследствии было установлено, что у этих полей одна и та же природа.

Взаимодействие элементов тока .

Закон взаимодействия токов был открыт экспереметально задолго до создания теории относительности. Он значительно сложнее закона Кулона, описывающего взаимодействие неподвижных точечных зарядов. Этим и объясняется, что в его исследовании приняли участие многие ученые, а существенный вклад внесли Био (1774 — 1862), Савар (1791 — 1841), Ампер (1775 — 1836) и Лаплас(1749 — 1827).

В 1820 г. Х. К. Эрстед (1777 — 1851) открыл действие электрического тока на магнитную стрелку. В этом же году Био и Савар сформулировали закон для силы dF , с которой элемент тока I DL действует на магнитный полюс, удаленный на расстояние R от элемента тока:

DF I dL (16.1)

Где – угол, характеризующий взаимную ориентацию элемента тока и магнитного полюса. Функция вскоре была найдена экспериментально. Функция F (R ) Теоретически была выведена Лапласом в виде

F (R ) 1/r. (16.2)

Таким образом, усилиями Био, Савара и Лапласа была найдена формула, описывающая силу действия тока на магнитный полюс. В окончательном виде закон Био-Савара-Лапласа был сформулирован в 1826г. В виде формулы для силы, действующей на магнитный полюс, поскольку понятия напряженности поля еще не существовало.

В 1820г. Ампер открыл взаимодействие токов – притяжение или отталкивание параллельных токов. Им была доказана эквивалентность соленоида и постоянного магнита. Это позволило четко поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Ампер по своему образованию и склонностям был теоретиком и математиком. Тем не менее при исследовании взаимодействия элементов тока он выполнил очень скрупулезные экспериментальные работы, сконструировав ряд хитроумных устройств. Станок Ампера для демонстраци сил взаимодействия элементов тока. К сожалению, ни в публикациях, ни в его бумагах не осталось описания пути, каким он пришел к открытию. Однако формула Ампера для силы отличается от (16.2) наличием в правой части полного дифференциала. Это отличие несущественно при вычислении силы взаимодействия замкнутых токов, поскольку интеграл от полного дифференциала по замкнутому контуру равен нулю. Учитывая, что в экспериментах измеряется не сила взаимодействия элементов тока, а сила взаимодействия замкнутых токов, можно с полным основанием считать Ампера автором закона магнитного взаимодействия токов. Используемая в настоящее время формула для взаимодействия токов. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844г. Грассманом (1809 — 1877).

Если ввести 2 элемента тока и , то сила, с которой элемент тока действует на элемент тока будет определяться следующей формулой:

, (16.2)

Точно также можно записать:

(16.3)

Легко видеть:

Так как векторы и имеют между собой угол не равный 180°, то очевидно , т. е. III-ий закон Ньютона для элементов тока не выполняется. Но если вычислить силу, с которой ток , текущий по замкнутому контуру , действует на ток , текущий по замкнутому контуру :

, (16.4)

А затем вычислить , то , т. е. для токов Ш-ий закон Ньютона выполняется.

Описание взаимодействия токов с помощью магнитного поля.

В полной аналогии с электростатикой взаимодействие элементов тока представляется двумя стадиями: элемент тока в месте нахождения элемента создает магнитное поле, которое действует на элемент с силой . Поэтому элемент тока создает в точке нахождения элемента тока магнитное поле с индукцией

. (16.5)

На элемент , находящийся в точке с магнитной индукцией , действует сила

(16.6)

Соотношение (16.5), которое описывает порождение магнитного поля током, называется законом Био-Савара. Проинтегрировав (16.5) получим:

(16.7)

Где — радиус-вектор, проведенный от элемента тока к точке, в которой вычисляется индукция .

Для объемных токов закон Био-Савара имеет вид:

, (16.8)

Где j – плотность тока.

Из опыта следует, что для индукции магнитного поля справедлив принцип суперпозиции, т. е.

Пример.

Дан прямой бесконечный ток J. Вычислим индукцию магнитного поля в точке М на расстоянии r от него.

= .

= = . (16.10)

Формула (16.10) определяет индукцию магнитного поля, созданного прямым током.

Направление вектора магнитной индукции Приведено на рисунках.

Сила Ампера и сила Лоренца.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера. Фактически эта сила

Или , где

Перейдем к силе, действующей на проводник с током длиной L . Тогда = и .

Но ток можно представить как , где — средняя скорость, n – концентрация частиц, S – площадь поперечного сечения. Тогда

, где . (16.12)

Так как , . Тогда , где — сила Лоренца, т. е. сила, действующая на заряд, движущийся в магнитном поле. В векторном виде

При сила Лоренца равна нулю, т. е. она не действует на заряд, который движется вдоль направления . При , т. е. сила Лоренца перпендикулярна скорости: .

Как известно из механики, если сила перпендикулярна скорости, то частицы движутся по окружности радиуса R, т. е. ,

Магнитное поле оказывает на рамку с током ориентирующее действие. Следовательно, вращающий момент, испытываемый рамкой, есть результат действия сил на отдельные ее элементы. Обобщая результаты исследования действия магнитного поля на различные проводники с током, Ампер установил, что сила d ,с которой магнитное поле действует на элемент проводника d с током, находящийся в магнитном поле, прямо пропорциональна силе тока I в проводнике и векторному произведению элемента длиной d проводника на магнитную индукцию :

Направление вектора d может быть найдено, согласно (3.3.1), по общим правилам векторного произведения, откуда следует правило левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор , а четыре вы­тянутых пальца расположить по направлению тока в проводнике, то отогнутый большой палец покажет направление силы, действующей на ток.

Модуль силы Ампера вычисляется по формуле

где a -угол между векторами d и .

Закон Ампера применяется для определения силы взаимодействия двух токов. Рассмотрим два бесконечных прямолинейных параллельных тока I 1 и I 2 (направления токов указаны на рис. 3.3.2), расстояние между которыми равно R.

Каждый из проводников создает магнит­ное поле, которое действует по закону Ампера на другой проводник с током. Рассмотрим, с какой силой действует магнитное поле тока I 1 на элемент dl второго проводника с током 1 2 .

Ток I 1 создает вокруг себя магнитное поле, линии магнитной индукции которого представляют собой концентрические окружности. Направление вектора задается правилом правого винта, его модуль по формуле (3.3.2) равен

Направление силы d 1 , с которой поле 1 действует на участок dl, второ­го тока, определяется по правилу левой руки и указано на рис 3.3.1. Модуль силы,
согласно (3.3.2), с учетом того, что угол, а между элементами тока 1 2 и вектором
1 прямой равен

или, подставляя значения для В 1 , получим

Рассуждая аналогично, можно показать, что сила dF 2 , с которой магнитное поле тока I 2 действует на элемент dl первого проводника с током I 1 , направле­на в противоположную сторону и по модулю равна

Рассмотрим провод, находящийся с магнитном поле и по которому течет ток (рис.12.6).

На каждый носитель тока (электрон), действует сила Лоренца . Определим силу, действующей на элемент провода длины dl

Последнее выражение носит название закона Ампера .

Модуль силы Ампера вычисляется по формуле:

.

Сила Ампера направлена перпендикулярно плоскости, в которой лежат векторы dl и B.


Применим закон Ампера для вычисления силы взаимодействия двух находящихся в вакууме параллельных бесконечно длинных прямых токов (рис.12.7).

Расстояние между проводниками - b. Предположим, что проводник I 1 создает магнитное поле индукцией

По закону Ампера на проводник I 2 , со стороны магнитного поля, действует сила

, учитывая, что (sinα =1)

Следовательно, на единицу длины (dl =1) проводника I 2 , действует сила

.

Направление силы Ампера определяют по правилу левой руки: если ладонь левой руки расположить так, чтобы в нее входили линии магнитной индукции, а четыре вытянутых пальца расположить по направлению электрического тока в проводнике, то отставленный большой палец укажет направление силы, действующей на проводник со стороны поля.

12.4. Циркуляция вектора магнитной индукции (закон полного тока). Следствие.

Магнитное поле в отличие от электростатического - непотенциальное поле: циркуляция вектора В магнитной индукции поля вдоль замкнутого контура не равна нулю и зависит от выбора контура. Такое поле в векторном анализе называют вихревым полем.


Рассмотрим в качестве примера магнитное поле замкнутого контура L произвольной формы, охватывающего бесконечно длинный прямолинейный проводник с током l , находящегося в вакууме (рис.12.8).

Линии магнитной индукции этого поля представляют собой окружности, плоскости которых перпендикулярны проводнику, а центры лежат на его оси (на рис. 12.8 эти линии изображены пунктиром). В точке А контура L вектор В магнитной индукции поля этого тока перпендикулярен радиусу-вектору .

Из рисунка видно, что

где - длина проекции вектора dl на направление вектора В . В то же время малый отрезок dl 1 касательной к окружности радиуса r можно заменить дугой окружности: , где dφ - центральный угол, под которым виден элемент dl контура L из центра окружности.

Тогда получаем, что циркуляция вектора индукции

Во всех точках линии вектор магнитной индукции равен

интегрируя вдоль всего замкнутого контура, и учитывая, что угол изменяется от нуля до 2π, найдем циркуляцию

Из формулы можно сделать следующие выводы:

1. Магнитное поле прямолинейного тока – вихревое поле и не консервативно, так как в нем циркуляция вектора В вдоль линии магнитной индукции не равна нулю;

2. циркуляция вектора В магнитной индукции замкнутого контура, охватывающего поле прямолинейного тока в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока.

Если магнитное поле образовано несколькими проводниками с током, то циркуляция результирующего поля

Данное выражение называется теоремой о полном токе .

Сила взаимодействия между элементами токов, пропорциональная токам и длине элементов, обратно пропорциональная квадрату расстояния между ними и, зависящая от их взаимного расположения

Анимация

Описание

В 1820 г. Ампер открыл взаимодействие токов - притяжение или отталкивание параллельных токов. Это позволило поставить задачу исследования: свести все магнитные взаимодействия к взаимодействию элементов тока и найти закон их взаимодействия как фундаментальный закон, играющий в магнетизме роль, аналогичную закону Кулона в электричестве. Используемая в настоящее время формула для взаимодействия элементов тока была получена в 1844 г. Грассманом (1809-1877 гг.) и имеет вид:

, (в "СИ") (1)

, (в гауссовой системе)

где d F 12 - сила, с которой элемент тока I 1 d I 1 действует на элемент тока I 2 d I 2 ;

r 12 - радиус-вектор, проведенный от элемента I 1 d I 1 к элементу тока I 2 d I 2 ;

c =3Ч 108 м/с - скорость света.

Взаимодействие элементов тока

Рис. 1

Сила d F 12 , с которой элемент тока I 2 d I 2 действует на элемент тока I 1 d I 1 , имеет вид:

. (в "СИ") (2)

Силы d F 12 и d F 21 , вообще говоря, не коллинеарны друг другу, следовательно, взаимодействие элементов тока не удовлетворяет третьему закону Ньютона:

d F 12 +d F 21 № 0.

Закон (1) имеет вспомогательный смысл, приводя к правильным, подтвержденным на опыте значениям силы только после интегрирования (1) по замкнутым контурам L 1 и L 2 .

Сила, с которой ток I 1 , текущий по замкнутому контуру L 1 , действует на замкнутый контур L 2 с током I 2 , равна:

. (в "СИ") (3)

Аналогичный вид имеет сила d F 21 .

Для сил взаимодействия замкнутых контуров с током третий закон Ньютона выполняется:

d F 12 +d F 21 =0

В полной аналогии с электростатикой взаимодействие элементов тока представляется так: элемент тока I 1 d I 1 в точке нахождения элемента тока I 2 d I 2 создает магнитное поле, взаимодействие с которым элемента тока I 2 d I 2 приводит к возникновению силы d F 12 .

, (4)

. (5)

Соотношение (5), описывающее порождение магнитного поля током, называется законом Био-Савара.

Сила взаимодействия параллельных токов.

Индукция магнитного поля, создаваемого прямолинейным током I 1 , текущим по бесконечно длинному проводнику, в точке нахождения элемента тока I 2 dx 2 (см. рис. 2) выражается формулой:

. (в "СИ") (6)

Взаимодействие двух параллельных токов

Рис. 2

Формула Ампера, определяющая силу, действующую на элемент тока I 2 dx 2 , находящийся в магнитном поле В 12 , имеет вид:

, (в "СИ") (7)

. (в гауссовой системе)

Эта сила направлена перпендикулярно проводнику с током I 2 и является силой притяжения. Аналогичная сила направлена перпендикулярно проводнику с током I 1 и является силой притяжения. Если токи в параллельных проводниках текут в противоположные стороны, то такие проводники отталкиваются.

Андре Мари Ампер (1775-1836) - французский физик.

Временные характеристики

Время инициации (log to от -15 до -12);

Время существования (log tc от 13 до 15);

Время деградации (log td от -15 до -12);

Время оптимального проявления (log tk от -12 до 3).

Диаграмма:

Технические реализации эффекта

Схема установки для "взвешивания" токов измерения

Реализация единицы 1А с помощью силы, действующей на катушку с током.

Внутри большой фиксированной катушки помещается «измерительная катушка», на которую действует подлежащая измерению сила. Измерительная катушка подвешена к коромыслу чувствительных аналитических весов (рис. 3).

Схема установки для «взвешивания» токов измерения

Рис. 3

Применение эффекта

Закон Ампера взаимодействия токов, или, что - то же самое, магнитных полей, порождаемых этими токами, используют для устройства весьма распространенного типа электроизмерительных приборов - магнитоэлектрических приборов. Они имеют легкую рамку с проволокой, укрепленную на упругом подвесе той или иной конструкции, способную поворачиваться в магнитном поле. Родоначальником всех магнитоэлектрических приборов является электродинамометр Вебера (рис. 4).

Электродинамометр Вебера

Рис. 4

Именно этот прибор позволил провести классические исследования закона Ампера. Внутри неподвижной катушки У висит на бифилярном подвесе поддерживаемая вилкой ll ў подвижная катушка C , ось которой перпендикулярна оси неподвижной катушки. При последовательном прохождении тока по катушкам, подвижная катушка стремится стать параллельно неподвижной и поворачивается, закручивая бифилярный подвес. Углы поворота отсчитываются при помощи прикрепленного к раме ll ў зеркала f.

Литература

1. Матвеев А.Н. Электричество и магнетизм.- М.: Высшая школа, 1983.

2. Тамм И.Е. Основы теории электричества.- М.: Государственное издательство технико-теоретической литературы, 1954.

3. Калашников С.Г. Электричество.- М.: Наука, 1977.

4. Сивухин Д.В. Общий курс физики.- М.: Наука, 1977.- Т.3. Электричество.

5. Камке Д., Кремер К. Физические основы единиц измерения.- М.: Мир, 1980.

Ключевые слова

  • сила Ампера
  • магнитное поле
  • закон Био-Савара
  • индукция магнитного поля
  • взаимодействие элементов тока
  • взаимодействие параллельных токов

Разделы естественных наук:

Релятивистская форма закона Кулона: сила Лоренца и уравнения Максвелла. Электромагнитное поле.

Закон Кулона :

Сила Лоренца: СИЛА ЛОРЕНЦА - сила, действующая на заряженную частицу, движущуюся в электромагнитном поле. Если левую руку расположить так, чтобы составляющая магнитной индукции В, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Уравнения Максвелла: - это система дифференциальных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Электромагнитное поле: - это фундаментальное физическое поле, взаимодействующее с электрически заряженными телами, представляющее собой совокупность электрического и магнитного полей, которые могут при определённых условиях порождать друг друга.

Стационарное магнитное поле. Индукция магнитного поля, принцип суперпозиции. Закон Био-Савара.

Постоянное (или стационарное) магнитное поле: - это магнитное поле, неизменяющееся во времени. М\Г - это особый вид материи, посредством которой осуществляется взаимодействие между движущимися электрически заряженными частицами.

Магнитная индукция : - векторная величина, являющаяся силовой характеристикой магнитного поля в данной точке пространства. Определяет, с какой силой магнитное поле действует на заряд , движущийся со скоростью .

Принцип суперпозиции: - В самой простой формулировке принцип суперпозиции гласит:

результат воздействия на частицу нескольких внешних сил есть векторная сумма воздействия этих сил.
Закон Био-Савара: - это закон, определяющий напряженность магнитного поля, создаваемого электрическим током, в произвольной точке пространства вокруг проводника с током.


Сила Ампера. Взаимодействие параллельных проводников с током. Работа сил магнитного поля по перемещению витка с током.