Условия влияющие на растворимость. Растворимость веществ. Факторы, влияющие на растворимость. Влияние температуры на растворимость веществ

1.От природы растворителя и растворенного вещества. На растворимость оказывает влияние природа растворителя и растворенного вещества. Наибольшая растворимость достигается тогда, когда «подобное растворяется в подобном» − постулат (закон) установлен еще алхимиками.

Полярные и ионные соединения, как правило, хорошо растворяются в полярных растворителях, а неполярные – в неполярных. Например , хлороводород, молекулы которого полярны, хорошо растворяется в воде, но плохо в бензоле. Бензол хорошо растворяется в эфире, но не смешивается с водой. С научной точки зрения это объясняется теорией химической связи.

Вещества с одинаковым типом межмолекулярных сил притяжения имеют тенденцию к взаимной растворимости. Это обобщение и формулируется в более простой форме: «подобное растворяется в подобном». Неполярные вещества растворимы в неполярных растворителях, тогда как ионные и полярные вещества растворимы в полярных растворителях.Ковалентные (каркасные) твердые вещества типа алмаза или кварца не растворяются ни в полярных, ни в неполярных растворителях, т.к. в этих веществах очень велики межмолекулярные силы.

2. От влияния температуры. С повышением температуры растворимость почти всех твердых веществ в жидкостях увеличивается. Зависимость между растворимостью и температурой изображается в виде кривых растворимости.

Растворение жидкостей в жидкостях (смешивающиеся) с повышением температуры растет.

Сложный характер носит температурная зависимость растворимости ограниченно смешивающихся жидкостей. Для них с изменением температуры, ограниченная растворимость, может перейти в неограниченную и наоборот Т кр (критическая температура)для системы вода/фенол равна 66,4 0 С

Растворимость газов в жидкостях с повышением температуры уменьшается, т.к. процесс растворения почти всегда сопровождается выделением теплоты - процесс экзотермический (ΔH раств. <0), Эту закономерность часто используют для удаления растворенных газов из воды (например С0 2) простым кипячением.

Снижение температуры благоприятствует растворению газов.

Например, уменьшение растворимости кислорода в воде с повышением температуры – один из нежелательных эффектов, называемых «тепловым загрязнением» озер и ручьев.

В органических жидкостях нередко растворения газа сопровождается эндотермическим процессом (ΔH раств. > 0). Поэтому растворимость увеличивается с повышением температуры.Например, растворение благородных газов в органических растворителях сопровождается поглощением теплоты (гелия и неона в ацетоне, бензоле, этаноле, циклогексане).

3. От влияния давления. На растворимость твердых веществ и жидкостей в жидкостях, давление существенное влияние не оказывает, т.к. процесс растворения не сопровождается значительным изменением объема и концентрации (незначительно меняется при давлении больше 1000 атмосфер).

При растворении газа в жидкости происходит значительное уменьшение объема системы. Поэтому повышение давления согласно принципу Ле Шателье - Брауна должно приводить к смещению равновесия вправо, т. е. к увеличению растворимости газа. Если газ малорастворим в данной жидкости и давление невелико, то растворимость газа пропорциональна его давлению. Эта зависимость выражается законом Генри (1803г.):

Закон Генри при постоянной температуре растворимость газа в жидкости прямо пропорциональна его давлению над жидкостью.

Где С – концентрация газа в насыщенном растворе, моль/л;

К г – постоянная Генри для газа, моль/л·Па Константа Генри зависит от природы газа, растворителя и температуры.;

р – давление газа над жидкостью (парциальное давление), Па

Газ не растворяется в жидкости беспредельно. При некоторой концентрации газа См устанавливается равновесие:

Закон Генри справедлив лишь для сравнительно разбавленных растворов, при невысоких давлениях и отсутствии химического взаимодействия между молекулами растворяемого газа и растворителем.

В случае растворения смеси газов в жидкости в математическое выражение закона Генри вместо давления над раствором подставляют парциальное давление Р i данного компонента.

Под парциальным давлением компонента понимают долю давления компонента от общего давления газовой смеси: Р i / Р общ

1. Парциальное давление компонента рассчитывают по формуле Р i = Р общ х(X i)

2. где p i – парциальное давление компонента Х i ;

3. Р общ – общее давление газовой смеси;

4. х(Х i) – молярная доля i-ого компонента.

Изучая растворимость газов в жидкостях в присутствии электролитов, русский врач-физиолог И. М. Сеченов (1829-1905) установил следующую закономерность (закон Сеченова): растворимость газов в жидкостях в присутствии электролитов понижается; происходит высаливание газов.

Природа газа. При обычных условиях один объём, например, воды может растворить 0,02 объёма водорода, 0,05 объёмов кислорода, 400 объёмов хлористого водорода или 700 объёмов аммиака. В жидкостях лучше растворяется тот газ, который имеет более высокую температуру кипения.

Природа растворителя. Подавляющее большинство газов, молекулы которых неполярны (Н 2 , О 2 , N 2 и др.), растворяется в мало полярных растворителях (например, в органических) лучше, чем в воде.

Температура. При нагревании растворимость газов в жидкостях, как правило, уменьшается. Кипячением жидкостей обычно удаётся освободить их от растворённых газов (т. е. осуществить дегазацию). С ростом температуры уменьшается растворимость в жидкости тех газов, для которых процесс растворения сопровождается выделением теплоты. Растворение газов в органических жидкостях нередко сопровождается поглощением теплоты; в подобных случаях с ростом температуры растворимость газа увеличивается.

Давление. Зависимость растворимости газов от давления выражает закон растворимости газов (Генри, 1803): растворимость газа в жидкости прямо пропорциональна его парциальному давлению:

где р В – парциальное давление газа Внад поверхностью его раствора, Па;

К Г – константа пропорциональности (константа Генри) , Па;

х В –молярная доля растворённого газа.

Понижение парциального давления газа ведёт к уменьшению его растворимости. Пример – обычная газированная вода, представляющая собой приготовленный под повышенным давлением углекислого газа его насыщенный водный раствор: при соприкосновении её с воздухом (в котором парциальное давление СО 2 составляет всего 0,2 мм рт. ст.) растворённый углекислый газ начинает бурно выделяться.

Закон растворимости газов верен лишь для достаточно разбавленных растворов, при сравнительно невысоких давлениях и отсутствии химического взаимодействия молекул растворяемого газа с растворителем (или друг с другом).

Растворимость жидкостей в жидкостях

Неограниченная взаимная растворимость, или смешиваемость

(толуол – бензол, этиловый спирт – вода).

Ограниченная взаимная растворимость (вода – диэтиловый эфир,

вода – бензин);

Практически полная нерастворимость (ртуть – вода);

Если жидкости растворяются друг в друге ограниченно, то происходит образование двух жидких фаз, причём фаза с большей плотностью (насыщенный раствор бензина в воде) будет находиться в нижнем слое, а фаза с меньшей плотностью (насыщенный раствор воды в бензине) – в верхнем слое. При нагреваниирастворимость жидкостей в жидкостях чаще всего возрастает и может наступить момент (при критической температуре растворения ), когда граница раздела фаз исчезнет, и образуется одна жидкая фаза (т. е. обе жидкости смеши-ваются в любых пропорциях).

Взаимное растворение жидкостей обычно не сопровождается значительным изменением объёма, и поэтому мало зависит от давления, заметно возрастая лишь при очень высоких давлениях (порядка тысяч атмосфер или 10 8 Па).

Растворимость твёрдых веществ в жидкостях

Существует условное деление веществ по их растворимости в конкретном растворителе при определённой температуре на практически нерастворимые (меньше 0,1 г в 100 г растворителя, или меньше 0,001 моль/л), малорастворимые (от 0,1 до 1 г в 100 г растворителя, или 0,001-0,1 моль/л) и хорошо растворимые вещества (более 1 г в 100 г растворителя, или более 0,1 моль/л) (см. приложение 2). При повышении температуры растворимость твёрдых веществ в жидкостях, как правило, увеличивается.

При растворении твёрдых веществ в воде объём системы изменяется незначительно, поэтому их растворимость практически не зависит от давления.

Идеальный раствор – раствор, образующийся как простое «физическое» смешение компонентов при отсутствии их химических взаимодействий. Образование такого раствора не сопровождается тепловым эффектом и изменением объёма (∆V = 0, ∆Н = 0). Хотя растворы не обладают свойствами идеальных, поведение многих из них достаточно удовлетворительно описывается при помощи этой модели.

6.6. ЗАКОНОМЕРНОСТИ ПОВЕДЕНИЯ РАСТВОРОВ:

ЗАКОН РАУЛЯ

Давление пара над раствором. При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости какого-либо нелетучего вещества давление насыщенного пара этой жидкости понижается. Таким образом, давление насыщенного пара растворителя над раствором нелетучего вещества всегда ниже, чем над чистым (индивидуальным) растворителем при той же температуре. Разность между этими величинами называют понижением давления пара растворителя над раствором (или понижением давления пара раствора). Отношение величины этого понижения к давлению насыщенного пара растворителя над чистым растворителем называется относительным понижением давления пара растворителя над раствором:

где р 0 – давление насыщенного пара растворителя над чистым растворителем;

р – давление насыщенного пара растворителя над раствором.

Французский физик Рауль в 1887 установил закон, связывающий понижение давления пара растворителя над разбавленными растворами неэлектролитов с концентрацией: относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворённого вещества. Математическое выражение закона Рауля:

где х В – молярная доля растворённого вещества В.

Явление понижения давления насыщенного пара растворителя над раствором вытекает из принципа Ле Шателье: если на систему, находящуюся в равновесии, воздействовать извне путём изменения какого-либо параметра, то равновесие будет сдвигаться в направлении, способствующем восстановлению равновесия системы.

Представим себе равновесие между жидкостью, например водой, и её паром. Это равновесие, которому отвечает определённое давление насыщенного пара, можно выразить уравнением

(Н 2 О) жидк = (Н 2 О) пар.

Если теперь растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдёт процесс, увеличивающий её, – конденсация пара. Новое равновесие установится при более низком давлении насыщенного пара.

Замерзание и кипение растворов. Чистые (индивидуальные) вещества характеризуются строго определёнными температурами переходов из одного агрегатного состояния в другое (температура кипения t кип, температура плавления t плав или кристаллизации). При нормальном атмосферном давлении (101,325 кПа) t кип и t плав воды равны соответственно 0 и 100 °С.

Присутствие растворённого вещества повышает температуру кипения и понижает температуру замерзания растворителя, и тем сильнее, чем концентрированнее раствор. В большинстве случаёв из раствора кристаллизуется (при замерзании) или выкипает (при кипении) только растворитель, вследствие чего концентрация раствора в процессе замерзания или кипения возрастает. Это, в свою очередь, приводит к ещё большему повышению температуры кипения и снижению температуры замерзания. Таким образом, раствор кристаллизуется и кипит не при определённой температуре, а при некотором температурном интервале. Температуру начала кристаллизации и начала кипения данного раствора называют его температурой замерзания и температурой кипения.

Разность между температурами кипения раствора и чистого растворителя называют повышением температуры кипения раствора (∆t кип). Разность между температурами замерзания чистого растворителя и раствора называют понижением температуры замерзания раствора (∆t зам). Обозначая – температуры замерзания и кипения чистого растворителя, а – температуры кристаллизации и кипения раствора, имеем:

Всякая жидкость начинает кипеть при той температуре, при которой давление её насыщенного пара достигает величины внешнего давления. Например, вода под давлением 101,325 кПа кипит при 100 °С потому, что при этой температуре давление водяного пара как раз равно 101,325 кПа. Если же растворить в воде какое-нибудь нелетучее вещество, то давление её пара понизится. Чтобы довести давление пара полученного раствора до 101,325 кПа, нужно нагреть раствор выше 100 °С. Поэтому температура кипения раствора всегда выше температуры кипения чистого растворителя.

Кристаллизация же связана с выделением количества теплоты, равного теплоте плавления, и для чистых жидкостей протекает при постоянной температуре, причём температура кристаллизации равна температуре плавления Т пл.Последняя определяется из уравнения Клапейрона-Клаузиуса:

где р – давление;

v ж и v тв – удельный объём жидкой и твёрдой фазы соответственно;

L пл –удельная теплота плавления (фазового перехода).

Повышение температуры кипения и понижение температуры замерзания растворов соответствуют принципу Ле Шателье. Пусть имеется равновесие между жидкостью и твёрдой фазой, например, равновесие жидкая вода – лёд при 0 °С. Его можно выразить уравнением

(Н 2 О) твёрд (Н 2 О) жидк.

Если растворить в воде некоторое количество какого-либо вещества, то концентрация молекул воды в жидкости понизится и пойдет процесс, увеличивающий её, – плавление льда . Для установления нового равновесия необходимо понизить температуру.

Ф. Рауль в 1882-1888 гг. установил, что для разбавленных растворов неэлектролитов повышение температуры кипения и понижение температуры замерзания пропорциональны концентрации раствора:

где с т – моляльная концентрация (моляльность);

Е и К – эбулиоскопическая и криоскопическая постоянные,

Зависящие только от природы растворителя, но не от природы

растворённого вещества.

Для воды криоскопическая постоянная Кравна 1,85 эбулиоско-пическая постоянная Е равна 0,52. Для бензола С 6 Н 6 К = 5,1 , Е= 2,57; для уксусной кислоты СН 3 СООН К = 3,9 , Е = 3,07.

На измерениях температур кипения и замерзания растворов основаны эбулиоскопический и криоскопический методы определения молекулярных масс веществ.

Закон Рауля относится к бесконечно разбавленным идеальным растворам, применение его к реальным растворам ограничено тем в большей степени, чем выше их концентрация.

6.7. ОСМОС

Диффузия. Раствор представляет собой гомогенную (однородную) систему. Частицы растворённого вещества и растворителя находятся в беспорядочном тепловом движении и равномерно распределяются по всему объёму раствора. Если поместить в цилиндр концентрированный раствор какого-либо вещества, например сахара, а поверх него осторожно налить слой более разбавленного раствора сахара, то вначале сахар и вода будут распределены в объёме раствора неравномерно. Однако через некоторое время молекулы сахара и воды вновь равномерно распределятся по всему объёму жидкости. Это происходит потому, что молекулы сахара, беспорядочно двигаясь, проникают как из концентрированного раствора в разбавленный раствор, так и в обратном направлении; но при этом в течениелюбого промежутка времени из более концентрированного раствора в менее концентрированный переходит больше молекул сахара, чем из разбавленного раствора в концентрированный. Точно так же молекулы воды движутся в различных направлениях, но при этом из разбавленного раствора, более богатого водой, в концентрированный раствор переходит больше молекул воды, чем за то же время переносится в обратном направлении. Таким образом, возникает направленное перемещение сахара из концентрированного раствора в разбавленный, а воды – из разбавленного раствора в концентрированный. Каждое вещество переносится при этом туда, где его концентрация меньше. Такой самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации называется диффузией .

В ходе диффузии некоторая первоначальная упорядоченность в распределении веществ (высокая концентрация вещества в одной части системы и низкая – в другой) сменяется полной беспорядочностью их распределения.

Диффузию можно наблюдать, если налить в стеклянный цилиндр какой-либо окрашенный раствор, например раствор КМnО 4 , а сверху осторожно, чтобы не вызвать перемешивания, добавить воды. Вначале будет заметна резкая граница, но постепенно она будет размываться; через некоторое время растворённое вещество равномерно распределится по всему объёму раствора и вся жидкость примет один и тот же цвет.

В рассмотренном примере частицы растворителя и растворённого вещества диффундируют в противоположных направлениях. Такой случай называется встречной или двухсторонней диффузией . Иначе будет обстоять дело, если между двумя растворами поместить полупроницаемую перегородку, через которую растворитель может проходить, а растворённое вещество – нет. Например, если пропитать глиняный пористый цилиндр раствором сульфата меди, приготовленного из медного купороса, а затем погрузить его в раствор гексацианоферрата(II) калия, то в порах цилиндра осядет гексацианоферрат меди:

2CuSO 4 + K 4 = Cu 2 ↓ + K 2 SO 4 .

Обработанный таким образом глиняный цилиндр обладает свойствами полупроницаемой перегородки; через его стенки могут проходить молекулы воды, но для частиц растворённого вещества они непроницаемы.

Если в такой цилиндр налить раствор какого-либо вещества, например сахара, и погрузить цилиндр в воду, то выравнивание концентраций будет происходить только вследствие перемещения молекул воды. Последние в большем числе диффундируют в раствор, чем обратно, поэтому объём раствора будет постепенно увеличиваться, а концентрация сахара уменьшаться. Такая односторонняя диффузия через полупроницаемую перегородку называется осмосом .

Роль осмоса в жизни животных и растений. Оболочки клеток легко проницаемы для воды, но почти непроницаемы для веществ, растворённых во внутриклеточной жидкости. Проникая в клетки, вода создаёт в них избыточное давление, которое слегка растягивает оболочки клеток и поддерживает их в напряжённом состоянии, поэтому такие органы растения, как травянистые стебли, листья, лепестки цветов, обладают упругостью. Если срезать растение, то вследствие испарения воды объём внутриклеточной жидкости уменьшается, оболочки клеток опадают, становятся дряблыми – растение вянет. Если начавшее вянуть растение поставить в воду, начинается осмос , оболочки клеток снова напрягаются и растение принимает прежний вид.

Осмос является одной из причин, обусловливающих поднятие воды по стеблю растения, питание клеток и многие другие явления.

Если поместить эритроциты (красные клетки крови) в водопроводную воду, они лопнут, так как концентрация солей внутри эритроцитов значительна по сравнению с водой, где их практически нет. Вследствие осмоса вода войдёт внутрь клеток и разорвёт их. Поэтому лекарственные препараты для внутривенного введения готовят не на чистой воде, а на специальном (физиологическом) солевом растворе NaCl .

Осмотическое давление (p) внутреннее давление растворённого вещества, численно равное тому внешнему давлению, которое нужно приложить, чтобы прекратить осмос; оно зависит оттемпературы и концентрации, но не зависит ни от природы растворённого вещества, ни от природы растворителя. Эту зависимость Вант Гофф (1886) уподобил поведению идеального газа:

p = сRТ,

где p – осмотическое давление раствора, кПа;

с –молярная концентрация раствора (молярность), моль/л;

R – молярная газовая постоянная, 8,314 Дж/(моль∙К);

Т – абсолютная термодинамическая температура раствора.

Уравнение, описывающее закон Вант Гоффа, позволяет по величине осмотического давления раствора определять молярную массу (а значит, и относительную молекулярную массу) растворённого вещества:

где т –масса растворённого вещества, кг;

V –объём раствора, л;

М – молярная масса, кг/моль.

РАСТВОРЫ ЭЛЕКТРОЛИТОВ

ТЕОРИЯ АРРЕНИУСА

Растворы кислот, солей и оснований обладают электропроводностью, и их поведение отклоняется от законов разбавленных растворов Рауля и Вант Гоффа .

Теория ионизации, или электролитической диссоциации (Аррениус , 1887): «Молекулы кислот, оснований и солей в водном растворе частичнораспадаются на самостоятельные ионы. Чем больше таких ионов, тем больше электропроводность раствора. Но по мере распада молекул на ионы растёт и общее число частиц в растворе, так как при этом из одной частицы получаются две (или более) частиц. Следовательно, закон разбавленных растворов оказывается правильным и для водных растворов кислот, оснований и солей, если учитывать как самостоятельные частицы не только молекулы, но и возникающие при их распаде ионы».

Будучи сторонником «физической» теории растворов, Аррениус не учитывал взаимодействия растворённого вещества с растворителем и считал, что молекулы распадаются на свободные ионы. Изолированное рассмотрение процесса ионизации не давало возможности для его правильного понимания.

ТЕОРИЯ КАБЛУКОВА

И.А.Каблуков (1891) соединил представления С .Аррениуса и химическую теорию растворов Д.И.Менделеева : «По-нашему, вода, разлагая молекулы растворённого тела, входит с ионами в непрочные соединения, находящиеся в состоянии диссоциации; по мнению же Аррениуса, ионы свободно двигаются подобно тем отдельным атомам, которые происходят при диссоциации молекул галоидов при высокой температуре». С точки зрения Каблукова , в водных растворах содержатся не свободные, а гидратированные ионы, причём именно гидратация и является основной причиной ионизации молекул.

Положительно заряженные ионы называют катионами , отрицательно заряженные – анионами .

Процесс распада вещества на отдельные ионы. Около каждого из ионов, растворяемого в воде ионного вещества, например NаСl, отрицательный полюс диполя воды будет притягиваться к положительному иону Nа + , а положительный полюс отталкиваться и притягиваться к отрицательному иону Сl – . В результате около обоих ионов соберётся ряд притянутых ими диполярных молекул воды. Силы притяжения между ионами ослабевают настолько, что энергия взаимодействия с молекулами воды (гидратации) оказывается достаточной для того, чтобы отделить ионы друг от друга.

В растворителях менее полярных, чем вода, ориентация диполей около ионов происходит значительно меньше. Соответственно уменьшается и ослабление сил притяжения между ионами, из-за чего энергия гидратации может оказаться недостаточной для отделения их друг от друга. Поэтому распад молекулы на ионы обычно не наблюдается в таких малополярных растворителях, как диэтиловый эфир, бензол и т. п., и лишь сравнительно слабо происходит в растворителях промежуточной полярности, например в этиловом спирте. Ослабление сил притяжения между поляризованными атомами зависит от диэлектрической проницаемости (ε) растворителя , так как последняя входит в полное выражение основного закона электростатики – закона Кулона:

где F – сила взаимодействия зарядов q 1 и q 2 ;

r – расстояние между зарядами;

ε – диэлектрическая проницаемость растворителя.

Для воды при обычных условиях (20 0 C) ε = 81, поэтому в воде силы притяжения между ионами в 81 раз меньше, чем в кристалле (где для окружающего частицы пространства ε = 1). Значения ε для этилового спирта, диэтилового эфира и бензола соответственно равны 26,8 , 4 и 2.

Распад в воде на ионы наблюдается не только для ионных веществ, но и для веществ, молекулы которых в свободном состоянии являются полярными. Пример – HCl. Предварительная стадия распада – переход полярной структуры в ионную, происходящий под воздействием диполей воды. Притянувшиеся диполи воды к концам полярной молекулы обусловливают расхождение её полюсов, которое может закончиться тем, что молекула приобретёт ионную структуру.

У веществ с ионной и полярными связями распад на ионы идёт прежде всего по ионным связям, а затем по тем из полярных, которые ионогенны (т. е. способны достаточно легко переходить в ионные). По малополярным и неполярным ковалентным связям распад на ионы, как правило, не происходит.

1) ПРИРОДА СМЕШИВАЕМЫХ ВЕЩЕСТВ. Мы уже видели, что в веществах с полярными молекулами (особенно с водородными связями) и в ионных веществах существует сильное взаимное притяжение частиц. Поэтому такие вещества не будут легко дробиться (смешиваться с другими), если в растворе не будет сильного притяжения между частицами разных веществ, т.е. большая величина ΔH 1 должна быть полностью или почти полностью скомпенсирована отрицательной величиной ΔH 2 . Отсюда следует, что вещества с ионной связью или с полярными молекулами должны гораздо лучше растворяться в полярных или ионных растворителях, чем в растворителях с неполярными молекулами. Соответственно, вещества с неполярными молекулами лучше растворяются в неполярных растворителях и хуже - в полярных, а металлы - в металлах. Это правило сформулировано еще алхимиками: подобное растворяется в подобном. Не следует путать полярные связи и полярные молекулы. Связь C-Cl полярна, но в молекуле CCl 4 эти связи расположены симметрично и их дипольные моменты при сложении дают нуль, поэтому молекула в целом неполярна. Молекула воды полярна только потому, что она угловая. Если бы она была линейной, как СО 2 , она была бы неполярна, Ткип. была бы намного ниже.

Таким образом, если на одежде жирное пятно, его лучше смывать не водой, а бензином, CCl 4 или другим неполярным растворителем, а если пятно от соли или сахара - то лучше водой, а не бензином. Точно так же в металлургии: металлы в жидком состоянии обычно хорошо растворяют друг друга и плохо растворяют вещества с ионной связью (собственные оксиды, фосфаты, силикаты, фториды), которые образуют отдельную жидкую фазу - шлак.

2) ТЕМПЕРАТУРА. Здесь, как и в любых других равновесиях, действует принцип Ле Шателье. При нагревании растворимость возрастает, если ΔHраств > 0 (и тем сильнее, чем больше ΔH), и убывает, если ΔHраств < 0. Для твердых веществ более характерно первое, а для газов - второе, хотя бывает и наоборот. Это особенно наглядно в случае солей, образующих кристаллогидраты. При растворении кристаллогидрата в воде не может быть сильной гидратации, поскольку вещество уже гидратировано. Поэтому преобладает первое слагаемое, и ΔHраств > 0. Если мы берем ту же соль в безводном виде, но знаем, что она способна давать кристаллогидрат, то можно ожидать, что у нее преобладает второе слагаемое, и ΔHраств < 0. Поэтому графики зависимости растворимости от температуры у кристаллогидрата и безводной соли часто имеют противоположный наклон.



Таким образом, чаще при растворении твердых или жидких веществ в жидкостях растворимость возрастает с повышением температуры, а для газов – убывает.

3) ДАВЛЕНИЕ. Как уже обсуждалось, давление влияет в основном на процессы с участием газов.

Масса газа, растворяющегося при постоянной температуре в данном объеме жидкости, прямо пропорциональна парциальному давлению газа.

Это закон Генри . Он может быть выражен уравнением:

ω В = k В · p B

где ω В – массовая доля газа в насыщенном растворе, р В – парциальное давление газа над раствором, k В – коэффициент пропорциональности, называемый константой Генри , характеризующий растворимость данного газа в данном растворителе.

Он справедлив только для разбавленных растворов, при не очень высоких давлениях, и при условии, что при растворении нет ни диссоциации, ни ассоциации (иначе изменится уравнение реакции). Например, для HСl в воде он неприменим, а для O 2 , N 2 , NO - применим. По уравнению состояния газа его объем обратно пропорционален давлению. Поэтому объем газа, способного раствориться в данном количестве растворителя, по закону Генри не зависит от давления. Можно сказать: в 1 л воды при 20°С растворяется 31 мл кислорода, не указывая давление. Если повысить давление, то количество молекул кислорода в растворе возрастет, но объем растворенного газа будет тот же.

Зависимость растворимости газов от давления видел всякий, кто открывал бутылку лимонада, пива или шампанского. Внутри бутылки повышенное давление, и углекислый газ находится в растворе. При открывании давление падает, газ смешивается с воздухом, и парциальное давление CO 2 падает еще сильнее. Раствор становится пересыщенным, и из него выделяются пузырьки газа.

4) ПРИСУТСТВИЕ ТРЕТЬЕГО ВЕЩЕСТВА. Его влияние может быть разнообразно. Важнейшие случаи:

а) это вещество сильно сольватируется, связывает много молекул растворителя и этим уменьшает растворимость; пример: спирт по отношению к растворам солей;

б) это вещество связывает молекулы или ионы растворяемого вещества и этим повышает растворимость; пример: аммиак, связывающий ионы меди и повышающий растворимость Cu(OH) 2 ;

в) это вещество дает ионы, одноименные с ионами растворяемого вещества, и тем смещает равновесие растворения влево; пример: в насыщенном растворе CaSO 4 существует равновесие CaSO 4 (тв) = Ca 2+ (р-р) + SO 4 2- (р-р). Добавляя крепкий раствор хлорида кальция, мы увеличиваем концентрацию ионов кальция, и часть сульфата выпадает.

При добавлении HСl(г) к насыщенному раствору NaСl действуют причины (а) и (в).

10. Растворы и взвеси

10.5. Растворимость. Факторы, влияющие на растворимость

Растворимость веществ, т.е. способность растворяться в том или ином растворителе, различается; качественно по способности растворяться вещества можно разделить:

  • на хорошо растворимые (больше 1 г вещества в 100 г растворителя);
  • малорастворимые (0,1–1,0 г вещества в 100 г растворителя);
  • нерастворимые (меньше 0,1 г вещества в 100 г растворителя).

Однако следует иметь в виду, что абсолютно нерастворимых веществ в природе нет. Например, погруженная в воду серебряная монета частично поставляет в раствор ионы Ag + , благодаря чему вода приобретает целебные свойства.

Количественно растворимость характеризуют содержанием растворенного вещества в насыщенном растворе. Это содержание выражают с помощью коэффициента растворимости или массовой доли насыщенного раствора.

Коэффициент растворимости s (k ) равен максимальной массе вещества (в г), которое можно растворить в данных условиях в 100 г (реже - в 1 дм 3) растворителя; в случае газов растворимость часто задают в кубических сантиметрах (или граммах) на 1 дм 3: см 3 /дм 3 или г/дм 3 .

Рассмотрим факторы , влияющие на растворимость веществ.

Прежде всего, растворимость зависит от природы растворяемого вещества и растворителя . Согласно известному правилу - подобное растворяется в подобном. Это означает, что энергия взаимодействия между частицами растворяемого вещества должна быть близка к энергии межмолекулярных сил в растворителе. Вода как полярный растворитель лучше растворяет ионные вещества или вещества молекулярного строения с полярными молекулами: соли, щелочи, галогеноводороды, серная кислота и др.; в то же время неполярные алканы, бензол в воде плохо растворимы. Напротив, хорошими растворителями неполярных веществ являются керосин, бензин, состоящие из неполярных молекул углеводородов; имеющий неполярные молекулы иод лучше растворим в бензоле, чем в воде. Растворимость веществ в воде возрастает, если они химически взаимодействуют с водой (SO 3 , P 2 O 5 , Na 2 O и др.) или образуют с ней водородные связи (спирты, аммиак, фтороводород, пероксид водорода).

Растворимость веществ зависит от температуры и подчиняется принципу Ле Шателье. Так, растворение газов - процесс чаще всего экзотермический, поскольку при растворении газов практически отсутствуют затраты энергии на разрыв связей между молекулами газа:

А (г) ⇄ + H 2 O А (р-р) + Q .

Согласно принципу Ле Шателье, понижение температуры сместит это равновесие вправо, а повышение - влево. Таким образом, при повышении температуры растворимость газов в воде понижается, а при понижении температуры - возрастает.

По этой причине реки в северных широтах содержат больше кислорода и, следовательно, более богаты рыбой.

Повышение температуры на растворимость жидкостей влияет по-разному: иногда при нагревании жидкости смешиваются неограниченно, а иногда расслаиваются. В большинстве же случаев при повышении температуры взаимная растворимость жидкостей возрастает, вплоть до неограниченного по массе смешивания.

В случае твердых веществ влияние температуры на растворимость может быть различным (рис. 10.3); в большинстве случаев с ростом

Рис. 10.3. Кривые растворимости некоторых солей в вод

температуры раствормость твердых веществ возрастает, однако растворимость Ca(OH) 2 , CaCO 3 , CaSO 4 уменьшается. Растворимость NaCl от температуры зависит слабо.

На растворимость газов влияет давление . При растворении твердых веществ в жидкостях (или жидкости в жидкости) объем существенно не изменяется, поэтому изменение давления на растворимость в этом случае практически не влияет. Растворение газа в жидкости всегда сопровождается уменьшением объема, поэтому в случае газов повышение давления увеличивает их растворимость в жидкостях, а понижение давления, наоборот, уменьшает.

Растворимость не следует путать со скоростью растворения. Например, растворимость кускового сахара и сахарного песка одинаковые, однако насыщенный раствор сахара в воде быстрее образуется в случае сахара-песка (сахар-песок растворяется быстрее, так как в этом случае больше поверхность соприкосновения растворителя и растворяемого вещества). Повышению скорости растворения твердого вещества в жидкости способствует перемешивание, однако на растворимость оно не влияет.

Отметим, что не для всяких веществ можно получить насыщенные растворы. Есть вещества, растворимость которых в воде неограниченна: метанол, этанол, пропанол-1 и пропанол-2, уксусная, серная, муравьиная, пропановая и азотная кислоты, этаналь, этиленгликоль, глицерин.

Для растворов веществ, неограниченно смешивающихся с водой, понятия «насыщенный» и «ненасыщенный» не применимы (нельзя, например, говорить: насыщенный раствор серной кислоты). Очевидно, понятия «разбавленный» и «концентрированный» для веществ, неограниченно растворяющихся в воде, применимы

Пример 10.3. При температуре 40 °С растворимость вещества (в г на 100 г H 2 O) составляет 75 г, а при 0 °С - 45,2 г. Укажите формулу вещества:

Решение. Этим веществом не может быть аммиак (газ), так как его растворимость с понижением температуры увеличивается. Растворимость вещества достаточно высока, поэтому это не может быть AgCl (нерастворимая в воде соль). Искомым веществом не может быть метанол CH 3 OH, поскольку он неограниченно растворяется в воде. Следовательно, имеется в виду AgF.

Ответ : 4).

Пример 10.4. Наименьшее влияние на скорость растворения оксида цинка в соляной кислоте оказывает:

1) изменение температуры;

2) степень измельчения цинка;

3) повышение концентрации кислоты;

4) изменение давления.

Решение. Реакция, уравнение которой

ZnO(тв) + 2HCl (р-р) = ZnCl 2 (р-р) + H 2 O (ж),

протекает без участия газов, поэтому наименьшее влияние на ее скорость оказывает изменение давления.

Одни вещества лучше растворяются в том или ином растворителе, другие хуже. Считается, что абсолютно нерастворимых веществ нет. Каждое вещество способно к растворению, пусть даже в некоторых случаях и в очень незначительных количествах (например, ртуть в воде, бензол в воде).

К сожалению, до настоящего времени, нет теории, с помощью которой можно было бы предсказать и вычислить растворимость любого вещества в соответствующем растворителе. Обусловлено это сложностью и многообразием взаимодействия компонентов раствора между собой и отсутствием общей теории растворов (особенно концентрированных). В связи с этим необходимые данные по растворимости веществ получают, как правило, опытным путем.

Количественно способность вещества к растворению характеризуется чаще всего растворимостью иликоэффициентом растворимости (S ).

Растворимость (S ) показывает сколько граммов вещества может максимально раствориться при данных условиях (температуре, давлении) в 100 г растворителя с образованием насыщенного раствора.

При необходимости коэффициент растворимости определяется и для другого количества растворителя (например, для 1000 г, 100 см 3 , 1000 см 3 и т.д.).

По растворимости все вещества в зависимости от своей природы делятся на 3 группы: 1) хорошо растворимые; 2) мало растворимые; 3) плохо растворимые или нерастворимые.

Коэффициент растворимости для веществ первой группы больше 1 г (на 100 г растворителя), для веществ второй группы лежит в интервале 0,01 – 1,0 г и для веществ третьей группы S< 0,01 г.

На растворимость веществ оказывают влияние многие факторы, главными из которых являются природа растворителя и растворяемого вещества, температура, давление, наличие в растворе других веществ (особенно электролитов).

Влияние природы веществ на растворимость

Установлено опытным путем, что в растворителе, молекулы которого полярны, лучше всего растворяются вещества, образованные ионными или ковалентными полярными связями. А в растворителе, молекулы которого неполярны, лучше растворяются вещества, образованные слабополярными или неполярными ковалентными связями. По другому эту выявленную закономерность можно сформулировать так: «Подобное растворяется в подобном».

Растворимость веществ во многом обуславливается силой и характером их взаимодействия с молекулами растворителя. Чем сильнее выражено это взаимодействие, тем больше растворимость и наоборот.

Известно, что силы, действующие между неполярными и слабополярными молекулами, невелики и неспецифичны, т.е. в количественном выражении существенно не зависят от вида вещества.

Если в неполярную жидкость В ввести однотипные неполярные молекулы А, то энергия взаимодействия частиц А и В между собой не будет значительно отличаться от энергии взаимодействия между частицами А и А или частицами В и В. Поэтому подобно тому как смешиваются любые количества одного и того же вещества, с большой вероятностью будут неограниченно смешиваться друг с другом (т.е. растворяться друг в друге) и различные неполярные жидкости.

По этой же причине и молекулярные кристаллы обычно лучше растворяются в неполярных жидкостях.

Если же энергия взаимодействия молекул А и А или В и В больше чем А и В, то одинаковые молекулы каждого компонента будут предпочтительнее связываться между собой и растворимость их друг в друге понизится (табл. 6).

Полярность любого растворителя часто характеризуют значением его диэлектрической проницаемости (ε), которая легко определяется опытным путем. Чем она больше, тем более полярным является вещество.

Таблица 6. Растворимость KI(мас%) в растворителях различной полярности