Характеристика 6 а группы химических элементов. Характеристика d-элементов VI группы. Процесс состоит из трёх стадий

Общая характеристика элементов 6 группы.
Шестая группа периодической системы элементов состоит из двух подгрупп: главной - кислород, сера, селен, теллур и полоний - и побочной - хром, молибден и вольфрам. В главной подгруппе выделяют подгруппу селена (селен, теллур и полоний), побочную подгруппу называют подгруппой хрома. Все элементы главной подгруппы, кроме кислорода, могут присоединять по два электрона, образуя электроотрицательные ионы. Смотрите подробности разработка паспорта безопасности объекта тэк у нас.

Элементы главной подгруппы имеют на внешнем электронном

уровне по шесть электронов (s2р4). Атомы кислорода имеют два неспаренных электрона и не имеют d-уровня. Поэтому кислород проявляет в основном степень окисления -2 и только в соединениях со фтором +2. Сера, селен, теллур и полоний тоже имеют на внешнем уровне шесть электронов (s2p4), но у всех у них есть незаполненный d-уровень, поэтому они могут иметь до шести неспаренных электронов и в соединениях проявлять степень окисления - 2, +4 и +6.

Закономерность изменения активности этих элементов такая же, как и в подгруппе галогенов: легче всего окисляются теллуриды, затем селениды и сульфиды. Из кислородных соединений серы наиболее устойчивы соединения серы (VI), а для теллура - соединения теллура (IV). Соединения селена занимают промежуточное положение.

Селен и теллур, а также их соединения с некоторыми металлами (индием, таллием и др.) обладают полупроводниковыми свойствами и широко используются в радиоэлектронике. Соединения селена и теллура очень токсичны. Они применяются в стекольной промышленности для получения цветных (красных и коричневых) стекол.

В элементах подгруппы хрома идет заполнение d-уровня, поэтому на s-уровне их атомов - по одному (у хрома и молибдена) или два (у вольфрама) электрона. Все, они проявляют максимальную степень окисления +6, но для молибдена, и особенно для хрома, характерны соединения, в которых они имеют более низкую степень окисления (+4 для молибдена и +3 или +2 для хрома). Соединения хрома (III) очень устойчивы и похожи на соединения алюминия. Все металлы подгруппы хрома находят широкое применение.

Молибден был впервые получен К. В. Шееле в 1778 г. Он используется в производстве сталей высокой прочности и вязкости, применяющихся для изготовления оружейных стволов, брони, валов и др. Из-за способности испаряться при высокой температуре он мало пригоден для изготовления нитей накала, но обладает хорошей способностью сплавляться со стеклом, поэтому используется для изготовления держателей вольфрамовых нитей в лампах накаливания.

Вольфрам был открыт также К. В. Шееле в 178! г. Он применяется для получения специальных сталей. Добавка вольфрама к стали увеличивает ее твердость, эластичность и прочность. Вместе с хромом вольфрам придает стали свойство сохранять твердость при очень высоких температурах, поэтому такие стали применяются для изготовления резцов к быстрорежущим токарным станкам. Чистый вольфрам обладает наивысшей среди металлов температурой плавления (3370 °С), поэтому применяется для изготовления нитей в лампах накаливания. Карбид вольфрама отличается очень большой твердостью и термостойкостью и является основной составной частью тугоплавких сплавов.

В подгруппе кислорода с возрастанием атомного номера увеличивается радиус атомов, уменьшается энергия ионизации, характеризующая металлические свойства элементов. Поэтому в ряду 0--S--Se--Te--Ро свойства элементов изменяются от неметаллических к металлическим. В обычных условиях кислород - типичный неметалл (газ), а полоний - металл, похожий на свинец.

С увеличением атомного,номера элементов значение электроотрицательности элементов в подгруппе уменьшается. Отрицательная степень окисления становится все менее характерной. Окислительная степень окисления становится все менее характерной. Окислительная активность простых веществ в ряду 0 2 --S-Se--Те снижается. Так, если сера и значительно слабее, селен непосредственно взаимодействует с водородом, то теллур с ним в реакцию не вступает.

По значению электроотрицательности кислород уступает только фтору, поэтому в реакциях со всеми остальными элементами проявляет исключительно окислительные свойства. Сера, селен и теллур по своим свойствам. относятся к группе окислителей-восстановителей. В реакциях с сильными восстановителями проявляют окислительные свойства, а при действии сильных окислителей. они окисляются, то есть проявляют восстановительные свойства.


| | 3 | | | |

Кислород, сера, селен, теллур и полоний составляют главную подгруппу шестой группы периодической системы и являются р-элементами. Их атомы имеют на внешнем электронном уровне по шесть электронов и общую электронную конфигурацию внешнего электронного слоя можно выразить формулой: ns2np4. Электронные формулы атомов и некоторые физические константы приведены в таблице.

электронная конфигурация атома

средняя атомная масса

кажущийся радиус нейтрального атома, А

сродство к электрону, эВ

относительная электро

отрицательность

кажущийся радиус иона

Из данных таблицы следуют такие выводы:

1. Кажущиеся радиусы нейтральных атомов и отрицательных ионов правильно растут с увеличением порядкового номера элемента.

2. Величина относительной электроотрицательности уменьшается с увеличением кажущихся радиусов нейтральных атомов. Следовательно, от кислорода к полонию ослабевают окислительные свойства и увеличиваются восстановительные свойства нейтральных атомов. Сильнейшим окислителем среди этих элементов является кислород:

O – S – Se – Te – Po

Усиление окислительных свойств

3. С увеличением порядковых номеров элементов наблюдается постепенное ослабление неметаллических свойств и усиление металлических свойств.

Распределение валентных электронов у р-элементов шестой группы по атомным орбиталям имеет следующий вид:

для кислорода

для серы, селена, теллура и полония

Наличие шести электронов на внешнем квантовом слое характеризует способность рассматриваемых элементов проявлять отрицательную степень окисления 2–. Все элементы способны образовывать отрицательно заряженные ионы с зарядом 2–. Склонность к образованию отрицательно заряженных ионов Э-2 ослабевает от кислорода к полонию.

У атома кислорода отсутствует d-подуровень. Поэтому, вследствие наличия у него двух неспаренных p-электронов, атом кислорода может образовать с атомами других элементов две химические связи. Отсюда ясно, что соединения, образованные кислородом с одновалентными элементами, имеют формулу Э2О. Кроме того, атом кислорода может образовывать связь по донорно-акцепторному механизму.

Атом кислорода может выступать как донор – за счет имеющейся у него не поделенной пары электронов, например, при образовании иона гидроксония (Н2О + Н+= Н3О+) и как акцептор – за счет свободной орбитали, появляющейся у него при возбуждении путем спаривания двух неспаренных электронов (что наблюдается, например, в молекуле азотной кислоты // О

Н – О – N.

В зависимости от природы того атома, с которым кислород вступает во взаимодействие, степень его окисления может быть различной:

2(Н2О); -1(Н2О2); 0(О2); +1(O2F2); +2(ОF2).

У атомов серы, селена, теллура и полония имеется свободный d-подуровень. При возбуждении этих атомов их электроны могут переходить на вакантные d-орбитали и поэтому эти элементы проявляют следующие степени окисления: -2, +2, +4, +6.

Простые вещества.

Особенностью этой группы является полиатомность молекул простых веществ Эn, где 2 ≤ n ≤ ∞.

кислород

состав молекул

S8 (комн. tº)

Se8; Se∞ (комн. tº)

Te∞(комн. tº)

Te2(>1400ºC)

аллотропические модификации

О2(кислород)

ромбическая (ниже 95,6ºC)

моноклинная

(выше 95,6ºC)

аморфная (пластическая)

красный (кристаллический

металлический (серый)

аморфный

металлический

аморфный

α - модифицир-ый

β- модифицир-ый

ρ, плотность г/см3

4,82 (металл.)

6,25 (металл.)

t плавления ºC

t кипения ºC

распространенность элемента

Кларк - 49%

Литосфера-47,3%

воздух -23,1%

Из данных, приведенных в таблице, можно сделать следующие выводы:

1. Молекулы простых веществ, образуемые атомами p-элементами VI группы, полиатомны.

2. Для всех элементов характерно наличие аллотропических модификаций.

3. Температуры кипения и плавления (кроме полония), плотности их с увеличением порядкового номера возрастают.

Сера была известна до 5000 лет до н. э.

Кислород был открыт четыре раза: в 1772 г. Шееле (HgO), в1774 г. Пьер Байен, Пристли (Pb3O4 прокаливал – получил PbO и О2), Лавуазье дал название кислороду и определил, что он входит в состав воздуха.


Теллур (земля) – 1798 г. Клапрот.

Селен (луна) – 1817 г. Берцелиус нашел в шламе

Полоний – 1898 г. открыт Марии Кюри – Складовской и назван в честь ее родины (Польша).

Кислород

Кислород – самый распространенный элемент на Земле (58,0 мол. доли). Его большая химическая активность и количественное преобладание в значительной мере предопределяет формы существования всех других элементов на Земле. Самым распространенным природными соединениями кислорода являются Н2О, SiO2, силикаты и алюмосиликаты. В воздухе кислород находится в свободном состоянии и на его долю приходится 20,99% (об.). В верхних слоях атмосферы кислород находится в виде газа – озона (О3). Озоновый слой задерживает жесткое солнечное излучение, которое, при длительном воздействии на живые организмы, является для них смертельным.

Природный кислород состоит из трех стабильных изотопов: 16О(99,795%), 17О(0,037%) и 18О (0,204%). Кроме того, получены три радиоактивных изотопа, время жизни которых ничтожно мало.

По значению относительной электроотрицательности (ОЭО = 3,5) кислород уступает только фтору. Кислород образует соединения почти со всеми элементами, исключая гелий, неон и аргон. В соединениях с другими элементами, кроме уже упомянутых степеней окисления (-2, -1, +1, +2), кислород проявляет степень окисления +4 в озоне.

Для кислорода известны две аллотропических модификации: 1) О2 – кислород; 2) О3 – озон.

Наиболее устойчива двухатомная молекула кислорода (О2). Порядок связи в данной молекуле равен 2. Из энергетической диаграммы следует, что кислород является веществом парамагнитным (в молекуле имеется два неспаренных электрона). Это положение полностью подтверждает опыт. Энергия диссоциации молекулы О2 равна 494 кДж/моль, что указывает на достаточную ее устойчивость. Химическая активность молекулы кислорода объясняется наличием неспаренных электронов на разрыхляющих π орбиталях. В обычных условиях О2 – бесцветный газ. Жидкий кислород имеет голубую окраску. Кристаллы твердого кислорода окрашены в светло-синий цвет и похожи на снег. Кислород несколько тяжелее воздуха (dвоз = 1,105). В воде кислород растворяется в очень небольшом количестве. В каждом и твердом состоянии кислород притягивается магнитом.

Получение кислорода

В промышленности кислород получают из жидкого воздуха, электролизом воды, в качестве побочного продукта при получении водорода высокой чистоты.

В лаборатории кислород получают при термическом разложении богатых кислородом соединений (KМnO4, KСlO3, KNO3 и др.).

Например: 2КMn+7O4-2 tº→ К2Мn+6О4 + Mn+4О2 + О20

Такие реакции относятся к реакциям внутримолекулярного окисления-восстановления.

Химические свойства

По реакционной способности О2 уступает только галогенам. Химическая активность его растет с повышением температуры. О2 взаимодействует почти со всеми химическими элементами, за исключением галогенов, благородных газов и благородных металлов (серебро, золото, платина). Иногда взаимодействию препятствует оксидная пленка на поверхности окисляемого вещества.

Скорость реакций окисления зависит от природы окисляемого вещества, температуры, катализатора и т. д. Большинство реакций окисления экзотермичны, например

С + О2 → СО2 ΔΗ = -382,5 кДж/моль

2Н2 + О2 → 2Н2О ΔΗ = -571,7 кДж/моль

Применение кислорода

Основная масса кислорода, получаемого промышленностью, расходуется в черной металлургии для интенсификации выплавки чугуна и стали. Кислород широко используется в нефтехимическая
промышленность" href="/text/category/himicheskaya_i_neftehimicheskaya_promishlennostmz/" rel="bookmark">химической промышленности при получении серной и азотной кислот, смазочных масел и т. д. В смеси с ацетиленом О2 используется для сварки и резки металлов (температура пламени около 3200ºC). Жидкий кислород применяется в ракетах, горнорудном деле.

Озон

Озон (О3) является второй аллотропической модификацией кислорода. Это синий газ с резким запахом (т. кип. -112ºC, т. пл. -193ºC). Жидкий озон представляет собой темно-синюю жидкость. Твердый озон - черного цвета. Озон очень токсичен и взрывоопасен. Образование молекул озона сопровождается поглощением энергии:

https://pandia.ru/text/78/050/images/image014_50.gif" width="50" height="51 src=">О

https://pandia.ru/text/78/050/images/image017_44.gif" width="38" height="38"> 126 Ǻ 116,5º

Получают озон действием тихого электрического разряда на кислород. Небольшое количество озона образуются в процессах, сопровождающихся выделением атомарного кислорода (радиолиз воды, разложение пероксидов и т. д.). В естественных условиях озон образуется из атмосферного кислорода при грозовых разрядах и под действием ультрафиолетовых солнечных лучей. Максимальная концентрация озона образуется на высоте ≈ 25 км. «Озоновый пояс» играет важнейшую роль в обеспечении жизни на Земле, так как задерживает вредное для живых организмов ультрафиолетовое излучение и поглощает инфракрасное излучение Земли, препятствуя ее охлаждению.

Озон более активный окислитель, чем кислород. Например, уже при обычных условиях он окисляет многие металлы и другие вещества

2Ag + O3 → Ag2O + O2

PbS + 4O3 → PbSO4 + 4O2

В реакциях с его участием обычно образуется кислород. Со многими веществами озон реагирует в таких условиях, когда кислород остается инертным. Так, реакция О3 + 2KI + H2O = I2+2KOH+O2 протекает количественно и ее можно использовать для количественного определения озона.

Кроме того, известны реакции, в которых молекула озона участвует всеми тремя атомами кислорода, например KI + O3 → KIO3.

3SnCl2 + O3 + 6HCl = 3 SnCl4 + 3H2O.

Применение озона обусловлено его окислительными свойствами. Он используется в качестве дезинфицирующего и бактерицидного средства, для очистки воды, в пищевой промышленности и т. д.

Пероксиды

Пероксиды - это кислородные соединения, в которых атомы кислорода непосредственно связаны между собой. Таким образом, в структуре пероксидов имеется группировка –O–O–, её называют пероксид-ион .

Пероксид- и надпероксид-ионы получаются при соединении электронов к молекуле O2

O20+e → O2- - надпероксидый

O20+2e → 2O2- -пероксидный

O2-пара O2--пара O22-диа -

уменьшение устойчивости

Соединения, содержащие в своём составе надпероксид-ион (O2-), называются надпероксидами, например, KO2. Наличие у них неспаренного электрона обуславливает их парамагнетизм. В пероксид-ионе (O2-2) неспаренные электроны отсутствуют и поэтому этот ион диамагнитен. В пероксидах атомы кислорода связаны между собой одной двух электронной связью. Образование пероксидов характерно для активных металлов (щелочных, щелочно-земельных). Наиболее практическое значение имеет пероксид водорода (H2O2).

Молекула H2O2-полярна(μ=0,70∙10-29Кл∙м.) Наличие водородных связей обуславливает высокую вязкость пероксида водорода. Из-за ассоциации молекул H2O2 в обычных условиях представляет собой жидкость (tпл.=-0,410C, tкип.=1500C). Пероксид водорода легко разлагается на атомарный водород и кислород, H2O2=t H2+O2

растворим в воде, водный раствор H2O2–слабая кислота. Константа диссоциации Kg(H2O2)=2,24∙10-12

Получить пероксид водорода можно по общему способу получения слабых кислот (вытеснение слабой кислоты из её соли более сильной кислотой)

BaO2+H2SO4=H2O2+BaSO4↓

В промышленности пероксид водорода получают электрохимическим окислением серной кислоты при низкой температуре на платиновом аноде .

H 2 O 2 в ОВР

Кислороду в пероксиде водорода приписывают степень окисления, равную –1 (эта степень окисления является промежуточной для кислорода). Поэтому может быть как окислителем, так и восстановителем. При восстановлении H2O2 образуется вода или OH-, например

2KJ+H2O2+H2SO4=J2+K2SO4+2H2O

PbS+H2O2=PbSO4+H2O

2K3+3H2O2=2K2CrO4+2KOH+8H2O

В этих случаях идёт процесс: H2O2-окислитель

При взаимодействии с сильными окислителями пероксид водорода проявляет свойства восстановителя

5H2O2+2KMnO4+3H2SO4→5O20+2MnSO4+K2SO4+8H2O

Данная реакция используется в химическом анализе для количественного определения содержания пероксида водорода в растворе.

Применение:

3% раствор в медицине в качестве антисептика ,

6%-12% раствор – для обесцвечивания волос,

более 30% конц. в химической промышленности.

Сера

Общая характеристика серы. В отличие от кислорода, у серы имеются в наружном квантовом слое вакантные 3d-орбитали.

Сера может иметь следующие степени окисления:

2 (H2S, H2S2O3 и сульфиды, тиосульфат натрия Na2S2O3·5H2O, где один атом серы имеет степень окисления –2, а другой +6.;

2 (S2Cl2, 3SO→SO2+S2O)

4 (SO2, H2S+4O3, её соли);

6 (SO3, H2SO4, её соли, H2S2O7 пиросерная кислота)

H2SO5-пероксомоносерная кислота

H2S2O8-пероксодисерная кислота

Сера – типичный неметалл (оэо=2,5), она химически активна и непосредственно соединяется почти со всеми элементами, за исключением азота, йода, золота, платины, и благородных газов. В природе встречается как в свободном состоянии (самородная сера), так и в виде различных соединений.

Самородная сера встречается редко, наиболее распространены минералы сульфидных (FeS2, CuS, ZnS, Sb2S3, AgS) и сульфатных соединений (CaSO4·2H2O, BaSO4, MgSO4·7H2O, Na2SO4·10H2O), SO2, H2S – содержат вулканические газы. Кроме, того сера входит в состав растительных и животных белков и соединений, входящих в нефть. Во всех твердых и жидких состояниях сера диамагнитна.

Простые вещества

Сера существует в нескольких аллотропных модификациях. При комнатной температуре устойчива, желтая ромбическая сера (α-S), состоящая из очень мелких кристаллов. Большие кристаллы этой формы можно получить при медленной кристаллизации серы из раствора серы в сероуглероде. Они получаются правильно ограненные и прозрачные.

Вторая аллотропная модификация - это моноклинная сера (β-S)-кристаллы игольчатой формы.

Аллотропные модификации α- и β- серы состоят из молекул S8, которые имеют циклическое «зубчатое» строение.

У ромбической серы кольца находятся на расстоянии 3,3 Ǻ друг от друга. Они связаны между собой силами Ван-дер-Ваальса. Эта модификация не проводит тепло и электричество.


Различие в физических свойствах ромбической и моноклинной серы обусловлено не разным составом молекул (обе состоят из S8), а неодинаковой структурой кристаллов.

Существуют и другие аллотропные модификации серы, которые образуются при изменении температуры. Изменение давления тоже дает различные аллотропные формы.

С повышением температуры сера меняет свою окраску, так как идет уменьшение длины цепей:

600ºC 900ºC 1500ºC

оранжевый красный желтый

Самой устойчивой модификацией является ромбическая, в нее самопроизвольно переходят все остальные модификации.

Сера хорошо растворима в органических растворителях, особенно в сероуглероде и бензоле (34%, t = 25ºC).

Химические свойства серы

Сера – элемент весьма активный. При взаимодействии с более сильными окислителями (O2, CI2 и т. д.) она может отдавать свои электроны, то есть быть восстановителем:

S + Cl2 ↔ SCl2 (S2Br2, S2Cl2)

S0 - 4ē → S+4

2O0 + 4ē → 2O-2

P4 + xS ↔P4Sx x ~ 3, x~ 7

При оплавлении или нагревании сера взаимодействует почти со всеми металлами с образованием нестехиометрических соединений (проявляет свойства окислителя).

Hg0 + S0 = Hg+2S-2

С большинством металлов сера реагирует при нагревании, а со ртутью – при комнатной температуре. Поэтому серой засыпают разлитую ртуть с целью обеззараживания помещения от ртутных паров.

Сера также склонна к реакциям диспропорционирования . Например, при кипячении порошкообразной серы в растворе щелочи идет реакция

S0 + 2S0 +6NaOH = Na2+4SO3 + 2Na2S-2 + 3H2O

Сера взаимодействует с кислотами

S + 2H2SO4(конц) = 3SO2 + 2H2O

S + 6HNO3(конц) = H2SO4 + 6NO2 +2H2O

Получение серы

В промышленности серу получают отделением ее от пустой породы с помощью горячей воды при повышенном давлении. Химическими методами серу получают так:

1. Из отходящих газов металлургических и коксовых печей

2H2S + SO2 → 3S + 2H2O

2. Из природных сульфатов прокаливанием их с углем (процесс идет в несколько стадий)

CaSO4 + 4C = 4CO + CaS

CaS + HOH + CO2 = CaCO3 + H2S

сероводород сжигают:

2H2S + O2 = 2S↓ + 2H2O

Применение серы

Серу используют для производства сернистых органических красителей (CS2), сероуглерода, в производстве искусственного волокна, взрывчатых веществ, в процессах получения серной кислоты.

Сульфиты и гидросульфиты используются как восстановители. Гидросульфит кальция Ca(HSO3)2 применяется при производстве целлюлозы.

Соединения серы со степенью окисления +6

Состояние окисления +6 сера проявляет в соединениях с кислородом, галогенами. Наиболее типичным соединением является триоксид серы SO3. В молекуле SO3 сера находится в состоянии sp2-гибридизации. Молекула представляет собой плоский треугольник. ∟O-S-O = 120º; молекула неполярна (μ = 0).

В молекуле SO3 на 3σ-связи приходится 3π- связи. Молекула прочная, но менее, чем SO2. Молекула SO3 легко полимеризуется. В обычных условиях SO3 – жидкость (т. кип. 44,8˚C), затвердевающая в прозрачную массу (т. пл. 16,8 ºC). SO3 – типичный кислотный оксид, энергично реагирует с основными оксидами. С водой SO3 энергично реагирует с образованием серной кислоты и выделением большого количества тепла.

SO3 + H2O = H2SO4, ΔH = -87,8 кДж

Применяется SO3 в качестве сульфирующего агента в органическом синтезе, в качестве дегидратирующего агента при получении HNO3, для приготовления олеума и т. д.

Серная кислота

H2SO4 – сильная двухосновная кислота. Она представляет собой производное тетраоксосульфат (VI) – иона 2-. В 2- - ионе сера находится в состоянии sp3-гибридизации (4 σ-связи + 2π-связи). Ион 2- имеет форму правильного тетраэдра. Длина связи S-O равна 1,49 Å. Эта связь прочная.

В воде H2SO4 хорошо растворима, при этом выделяется большое количество тепла вследствие образования гидратов состава H2SO4·H2O, H2SO4·2H2O, H2SO4·4H2O. В связи с этим при приготовлении растворов H2SO4 следует кислоту осторожно, тоненькой струйкой вливать в воду, а не наоборот. Концентрированная H2SO4 энергично притягивает влагу и поэтому применяется для осушки газов. Этим же объясняется и обугливание многих органических соединений (углеводов).

C12H22O11 + H2SO4 = 12C + H2SO4∙11H2O

Концентрированная серная кислота может в больших количествах поглощать SO3, образуя при этом пиросерную кислоту H2S2O7. Такие растворы называются олеум. В олеуме существует равновесие H2SO4 + SO3 H2S2O7.

Серная кислота образует два типа солей: средние (сульфаты) Me2+1SO4 и кислые (гидросульфаты) Me+1HSO4. Большинство сульфатов хорошо растворимо в воде. К труднорастворимым относятся сульфаты Ba(II), Ca(II), Sr(II), Pb(II).

Образование труднорастворимого белого осадка BaSO4 является аналитической реакцией на сульфат – ион.

SO42- + Ba2+ = BaSO4 (белый кристаллический осадок)

BaSO4 нерастворим в соляной кислоте.

Некоторые сульфаты, содержащие кристаллизационную воду, называют купоросами. К последним относятся CuSO4·5H2O (медный купорос – голубой цвет), FeSO4·7H2O (железный купорос – зеленый цвет).

Среди солей серной кислоты интересны кристаллогидраты ее двойных солей – квасцы общей формулы Me2+1SO4·Me2(SO4)3·24H2O, где Me+1(Na, K,NH4 и др.), Me+3(Al, Cr, Fe, Co и др.).

Наиболее широко известны: алюмо-калиевые квасцы KAl(SO4)2·12H2O, хромо-калиевые KCr(SO4)2·12H2O, железо-аммониевые (NH4)2·Fe2(SO4)3·24H2O. Применяются квасцы как дубящее средство в кожевенной промышленности, в качестве протравы при крашении тканей, в медицине и т. д.

Функция S (VI ) в окислительно-восстановительных реакциях

Состояние окисления +6 является для серы высшим, и поэтому S+6 функционирует в окислительно-восстановительных реакциях только в качестве окислителя.

Окислительные свойства серы (+6) проявляются только в концентрированной серной кислоте. В разбавленной серной кислоте окислителем является протон Н+. Концентрированная серная кислота является довольно сильным окислителем. Неметаллы (C, S, P) она окисляет до высших оксидов.

S+2H2SO4 = 3SO2 + 2H2O

C + 2H2SO4 = CO2 + 2SO2 +2H2O

HBr и HI серная кислота восстанавливает до свободных галогенов

8HI + H2SO4 = 4I2 + H2S + 4H2O

2HBr +H2SO4 = Br2 + SO2 +2H2O

Концентрированная серная кислота окисляет многие металлы (кроме золота и платины). Железо концентрированная серная кислота пассивирует и поэтому ее можно транспортировать в стальных баллонах. Продуктами восстановления концентрированной серной кислоты могут быть различные соединения серы. Последовательный ряд восстановления серной кислоты

H2S+6O4→S+2O2→S0→H2S-2

Характер продуктов восстановления будет зависеть от активности металла: чем активнее металл, тем глубже восстановление серы (VI).

5H2SO4конц + 4Mg = 4MgSO4 + H2S+ 4H2O

2H2SO4конц + Cu = CuSO4 + SO2 + 2H2O

Zn + 2H2SO4конц = ZnSO4 + SO2 + 2H2O

При действии разбавленной серной кислоты на металлы продуктом восстановления является Н2 и растворяются в разбавленной серной кислоте только металлы, стоящие в электрохимическом ряду до водорода.

H2SO4разб + Zn = ZnSO4 + H2

3Zn + 4H2SO4разб = S↓ + 3ZnSO4 + 4H2O

4Zn + 5H2SO4 очень разб = H2S + 4ZnSO4 + 4H2O

Получение серной кислоты

Сущность промышленного способа получения серной кислоты заключается в окислении диоксида серы SO2 до триоксида серы SO3 и превращением последнего в серную кислоту. Схему получения можно представить в следующем виде:

FeS2 SO2 SO3 H2SO4

Этот процесс осуществляется двумя способами: контактным и нитрозным. В контактном методе получения серной кислоты в качестве катализатора для окисления SO2 используют ванадиевый ангидрид V2O5 с добавлением K2SO4 или PbSO4. В нитрозном способе получения серной кислоты катализатором, ускоряющим окисление SO2 в SO3, служит оксид азота NO.

Применение серной кислоты

Серная кислота является одним из важнейших продуктов основной химической промышленности. Большинство химических соединений получается при прямом или косвенном участии серной кислоты. Широко используется серная кислота в производстве минеральных удобрений.

Она употребляется для получения многих минеральных кислот и солей, используется в органическом синтезе, при производствах взрывчатых веществ, красителей, в текстильной, кожевенной и других отраслях промышленности.

Пероксосерные кислоты – это кислородные кислоты серы, характеризующиеся наличием пероксо-группы – О-О. Хорошо известны две пероксокислоты серы: пероксомоносерная H2SO5 и пероксодисерная H2S2O8.

Пероксомоносерная кислота (кислота Каро) H2SO5 является пероксидной формой серной кислоты

H – O – O – S – O – H

H2SO5 относится к числу сильных одноосновных кислот. Подобно пероксиду водорода она неустойчива и является очень сильным окислителем.

2KI + H2SO5 = K2SO4 + I2 + H2O

Получают H2SO5 в качестве окислителя в органическом синтезе. Пероксодисерная кислота H2S2O8 имеет строение

H – O – S – O – O – S – O – H

Она также относится к производным пероксида водорода, является очень сильным окислителем (может окислять Cr+3 → Cr+6, Mn+2 → Mn+7, 2I - → I0)

2KI + H2S2O8 = 2KHSO4 + I2

H2SO5 и H2S2O8 гидролизуются с образованием пероксида водорода и поэтому их используют при промышленном получении растворов Н2О2

H2S2O8 + 2H2O = 2H2SO4 + H2O2

H2SO5 + H2O = H2SO4 + H2O2

Тиокислоты серы

Тиокислоты представляют собой производные кислородных кислот, в которых часть или все атомы кислорода замещены серой. Соли тиокислот называются тиосолями. Примером тиокислот является тиосерная кислота H2S2O3 представляющая собой производное серной кислоты, в которой один атом кислорода замещен атомом серы. Структурная формула ее имеет вид

Na2SO3S-2 + 4Cl2 + 5H2O = 2H2SO4 + 6HCl + 2NaCl

Na2S2O3 + Cl2 + H2O = S↓ + Na2SO4 + 2HCl.

При взаимодействии тиосульфата со слабыми окислителями (I2, Fe3+ и другие) образуется тетратионат–ион S4O62-. Реакция между тиосульфатом натрия и солями железа (III) используется для обнаружения тиосульфат-ионов. Реакция протекает следующим образом

2Na2S2O3 + I2 = Na2S4O6 + 2NaI

2FeCl3 + 2Na2S2O3 = 2FCl2 + Na2S4O6 + 2NaCl

При протекании этой реакции образуется промежуточное соединение, окрашено в темно-фиолетовый цвет - Cl. Это неустойчивый комплекс Fe3+, который быстро разлагается по реакции внутримолекулярного окисления-восстановления по схеме

2+ = 2Fe2+ + S4O62-

При этом окраска исчезает.

Кроме того, для H2S2O3 характерны реакции, протекающие по механизму внутримолекулярного окисления-восстановления

H2S2O3 = H2+4SO4 + S0

Этим объясняется неустойчивость тиосерной кислоты. Тиосульфат натрия применяется в фотографии (закрепитель), в текстильной промышленности, медицине.

Элементы главной подгруппы VI группы носят общее групповое название «халькогены». Их атомы являются электронными аналогами, поскольку имеют одинаковое строение внешнего электронного слоя (ns 2 np 4).


р-элементы, неметаллы (кроме полония)


Валентность II, IV; VI


Степени окисления -2, +2, +4, +6 (кислород - исключение)

Валентные состояния атомов подгруппы серы

В невозбужденных атомах имеются 2 неспаренных электрона, которые участвуют в образовании ионных или ковалентных связей с другими атомами (В = II).


Вступая во взаимодействие с более ЭО атомами, сера, селен и теллур (а также Ро) могут переходить в возбужденные состояния, что сопровождается переходом электронов на вакантные d-орбитали.


При этом число неспаренных электронов увеличивается до 4 или 6, вследствие чего атомы могут проявлять В, равную IV и VI.

Отличие кислорода от других элементов подгруппы

В атомах О валентные электроны размещаются на 2-м энергетическом уровне, имеющем только s- и р-орбитали. Это исключает возможность перехода атомов О в возбужденные состояния, поэтому кислород во всех соединениях проявляет постоянную В = II.


Имея высокую ЭО (уступает только фтору), атомы кислорода всегда в соединениях заряжены отрицательно (с.о.= -2 или -1). Исключение - фториды OF 2 и O 2 F 2

Простые вещества

Простые вещества, образуемые элементами данной подгруппы, существуют в виде различных аллотропных модификаций:


O 2 - кислород, О 3 - озон


S - пластическая, моноклинная, ромбическая


Se - красный, стекловидный, серый


Те - кристаллический, аморфный


Кроме газообразных кислорода и озона, все остальные простые вещества при обычной температуре - твердые.

Соединения с водородом (халькогеноводороды) Н 2 Э

H 2 S - сероводород, H 2 Se - селеноводород, Н 2 Те - теллуроводород


Бесцветные газы с неприятным запахом. Очень ядовиты. Сильные восстановители. Водные растворы проявляют свойства слабых кислот.

Важнейшие соединения со С.O. +4

SO 2 (г.) Se) 2 (тв.), ТеO 2 (тв.) - кислотные оксиды


H 2 SO 3 - сернистая кислота, H 2 SeO 3 - селенистая кислота, Н 2 ТеО 3 - теллуристая - слабые кислоты, восстановители.


Кислотные свойства ослабевают. Восстановительная способность уменьшается.

Важнейшие соединения со С.O. +6

SO 3 (ж.) Se) 3 (тв.), ТеO 3 (тв.) - кислотные оксиды


H 2 SO 4 - серная кислота, H 2 SeO 4 - селеновая кислота - сильные кислоты, Н 2 ТеО 4 - ортотеллуровая - слабая кислота.


Соли: сульфаты, селенаты, теллураты.

Химические свойства d-элементов IV группы

Титан, цирконий и гафний представляют очень большой интерес в связи с тем, что их восстановительная активность весьма сильно зависит от температуры. При обычных температурах титан, цирконий и гафний имеют чрезвычайно низкую восстановительную активность и обладают высокой коррозионной устойчивостью в большинстве агрессивных сред. С повышением температуры восстановительная активность металлов растет и у титана при температуре его плавления является одной из самых высоких среди металлов.

Отношение к элементарным веществам. Элементарные вещества по их отношению к титану, цирконию и гафнию разделяют на четыре группы. К первой группе относят галогены и халькогены, образующие с этими металлами соединения ионного или ковалентного характера, не растворимые или ограниченно растворимые в металлах. Ко второй группе относят водород, элементарные вещества группы азота, углерода, бора и большинство металлов li-групп, взаимодействующие с этими металлами с образованием соединений интерметаллидного характера и ограниченных твердых растворов. В третью группу входят металлы - ближайшие соседи титана, циркония и гафния по периодической системе справа, образующие с ними непрерывные твердые растворы, и, наконец, в четвертую - благородные газы, щелочные, щелочноземельные и редкоземельные (кроме скандия) металлы, не взаимодействующие с титаном, цирконием и гафнием.

Со всеми галогенами титан, цирконий и гафний способны реагировать с образованием тетрагалидов, например:

Ti + 2С1 2 = TiCI 4 .

При температурах выше 300°С реакции идут энергично. Фтор и хлор с этими металлами начинают взаимодействовать уже на холоде.

На воздухе при обычной температуре титан, цирконий и гафний весьма устойчивы. Взаимодействие с кислородом с образованием диоксидов начинается только при высокой температуре: титан бурно реагирует с кислородом воздуха при 1200-1300°С, а цирконий при 600 – 700 0 С:



2Zr + О 2 = ZrO 2 .

Эти реакции сопровождаются ярким свечением. В атмосфере чистого кислорода горение происходит при 400-500 0 С. Очень бурно цирконий и титан взаимодействуют с кислородом воздуха в расплавленном состоянии.

Сера при обычной температуре не действует на металлы. При высокой температуре расплавленная и парообразная сера реагирует с металлами с образованием сульфидов, особенно энергично с расплавленным титаном и цирконием.

При обычной температуре по отношению к азоту титан, цирконий и гафний вполне устойчивы, однако при высоких температурах проявляют исключительную способность реагировать с ним. Достаточно заметить, что титан и цирконий способны гореть в атмосфере азота. Особенно бурно взаимодействуют с азотом расплавленные титан, цирконий и гафний. В результате взаимодействия металлов с азотом образуются нитриды 2Ti + N 2 = 2TiN, которые с металлами дают ряд твердых растворов.

Титан, цирконий и гафний обладают интересным свойством поглощать значительные количества водорода. Так, каждый грамм-атом титана и циркония может поглотить почти 2 грамм-атома водорода. С повышением температуры растворимость водорода в металлах уменьшается.

С углеродом титан, цирконий и гафний реагируют с образованием карбидов.

Отношение к воде . Вода при обычной температуре не действует на титан, цирконий и гафний. Кипящая вода взаимодействует с порошкообразными металлами с выделением водорода:

Me + 4H 2 О = Me(OH) 4 + 2Н 2 .

При этом на поверхности компактной массы металлов образуется гидроксидная пленка, предотвращающая действие воды на остальную массу металла. При 600-800°С водяные пары разлагаются металлами с выделением водорода и образованием диоксидов:

Me + 2Н 2 О = МеО 2 + 2Н 2 .

Характеристика d-элементов VI группы

Побочная подгруппа VI группы представлена следующими элементами: Сr, Mo и W. Все они являются d-элементами, так как у них застраивается электронами d-подуровень предвнешнего уровня. Валентными электронами этих элементов являются электроны внешнего S-подуровня и предвнешнего d-подуровня ‑ всего 6 электронов.

Электронная конфигурация внешнего уровня и предвнешнего d-подуровня: Сr – 3d 5 4S 1 ; Мо – 4d 5 5S 1 ; W – 5d 4 6S 2 .

d–элементы 6 группы занимают 4 место в своей декаде d–элементов, поэтому d–подуровень должен содержать 4 электрона, а на внешнем уровне должны находиться два s–электрона, как это и наблюдается для вольфрама. Для хрома и молибдена имеет место «проскок» одного s–электрона с внешнего уровня на предвнешний d–подуровень, в результате чего каждая d-орбиталь будет занята одним электроном, что соответствует наиболее устойчивому состоянию атома.

│││││ │ (n –1)d → ││││││ (n – 1)d

nS│↓│ nS ││

Параметры атомов d-элементов VI группы представлены в таблице 11.1.

Таблица 11.1 – Основные параметры атомов элементов VI группы

Радиус атома r а, нм Радиус иона r Э 6+ , нм Е Э о → Э + , эВ Ar
Сr 0,127 0,035 6,76
Mo 0,137 0,065 7,10
W 0,140 0,065 7,98

Анализируя эти данные, можно сказать, что наблюдается общая для всех d-элементов закономерность: радиусы атомов сверху вниз в подгруппе увеличиваются, но незначительно. Поскольку масса атомов в том же ряду сильно возрастает, то это приводит к уплотнению электронных оболочек у молибдена и особенно у вольфрама. Вырвать электрон из такой уплотненной структуры труднее, поэтому энергия ионизации при переходе от хрома к вольфраму возрастает, вследствие чего химическая активность элементов сверху вниз в подгруппе уменьшается. Ввиду того, что молибден и вольфрам имеют примерно одинаковый атомный и ионный радиусы, по свойствам они ближе друг к другу, чем к хрому.

В соединениях хром и его аналоги проявляют степени окисления (С.О.) 0, +1, +2, +3, +4, +5 и +6. Максимальная С.О. соответствует числу валентных электронов. Характерные С.О. хрома +3 и в меньшей мере +6 и +2. У молибдена и вольфрама, как и у других 4d- и 5d-элементов, наиболее характерна высшая С.О., то есть +6. Таким образом, для элементов подгруппы Cr наблюдается общая для d-элементов закономерность: повышение в группе сверху вниз устойчивой С.О. Поэтому окислительная способность соединений, где элементы проявляют высшую С.О., равную +6, сверху вниз в подгруппе уменьшается, так как устойчивость соединений в этом ряду увеличивается. Например, в ряду кислот:

Н 2 СrO 4 ↓ устойчивость Cr +6 окислительная способность

Н 2 МоО 4 увеличивается Мо +6 ↓ уменьшается

Н 2 WО 4 ↓ уменьшает W +6 ↓ уменьшает

Для Cr, Mo, W наиболее типичны координационные числа 6 и 4. Известны также производные, в которых к.ч. Мо и W достигает 8.

Примеры: - ; 3+ ; 3- ; 2- ; 2-

При этом в образовании связей могут участвовать d-орбитали предвнешнего уровня, а также s- и р-орбитали внешнего уровня.

Характер связи элементов подгруппы Сr в соединениях определяется во многом С.О. элемента. Для Cr, Mo, W при низких С.О. (+1, +2) характерны ионные связи, а при высоких С.О. – ковалентные связи. В соответствии с этим Сr +2 О – основной оксид, Сr 2 +3 О 3 – амфотерный, а Сr +6 О 3 – кислотный. Аналогично Сr(OH) 2 – основание, Сr(OH) 3 – амфотерный гидроксид, Н 2 СrО 4 – кислота.

Содержание хрома в земной коре составляет 0,02% (масс), молибдена – 10 -3 % (масс), вольфрама – 7 ∙ 10 -3 % (масс). Основной рудой хрома является хромистый железняк Fe(CrO 2) 2 (хромит). Молибден встречается в виде минерала молибденита МоS 2 (молибденовый блеск), а также молибдатов: РвМоО 4 (вульфенит) и МgMoO 4 . Важнейшие вольфрамовые руды – вольфрамит (смесь FeWO 4 и МnWO 4), шеелит

СаWO 4 и стольцит РвWO 4 .

Для получения чистого хрома сначала получают оксид Cr 2 O 3 , который затем восстанавливают алюмотермическим способом:

Cr 2 O 3 + 2Al Al 2 O 3 + 2Cr.

Для целей металлургии хром получают в виде сплава с железом (феррохром). Для этого хромистый железняк восстанавливают углем в электрической печи:

Fe(CrO 2) 2 + 4C Fe + 2Cr + 4CO.

Молибден и вольфрам получают, переводя перечисленные выше минералы в оксиды, из которых металл восстанавливают водородом при высоких температурах:

2МоS 2 + 7O 2 2MoO 3 + 4SO 2 ;

MoO 3 + 3H 2 Mo + 3H 2 O.

В виде простых веществ хром, молибден и вольфрам – серовато-белые блестящие металлы. Все они тугоплавки, а вольфрам является самым тугоплавким из металлов (Т пл. = 3380 о С).

Электропроводность металлов при переходе от хрома к вольфраму в целом увеличивается и составляет для молибдена и вольфрама приблизительно 30% электропроводности серебра. На свойства металлов в большой степени влияют примеси. Так, технический хром – один из самых твердых металлов, в то время как чистый хром пластичен.

Как и тантал, ниобий совершенно не вызывает раздражения тканей человеческого тела, срастается с ними и остается инертным даже после длительного воздействия жидкой среды организма. Высокая коррозионная стойкость ниобия позволила использовать его в медицине. Ниобиевые нити не вызывают раздражения живой ткани и хорошо сращиваются с ней. Восстановительная хирургия успешно использует такие нити для сшивания порванных сухожилий, кровеносных сосудов и даже нервов.

Соединения ниобия ядовиты. Предельно допустимая концентрация ниобия в воде 0,01 мг/л.

Титан в медицине.

Конструкторов медицинской техники, медицинского инструментария и врачей разных профессий в новом конструкционном металле привлекают прежде всего биологическая инертность по отношению к организму живого существа в сочетании с высокими механическими свойствами, антикоррозионной стойкостью, а также дешевизна и доступность. Эти качества титана, усиленные специфическими свойствами, и обеспечили очень большой интерес к нему и интенсивное проведение конструкторских работ и клинических испытаний самых различных изделий. Известно, что по коррозионной стойкости во многих медицинских агрессивных средах титан не уступает платине; он стоек в растворах кислот и щелочей. Скорость коррозии титана в морской воде (по своему химическому составу очень похожей на лимфу) - 0,00002 мм/год или 0,02 мм в 1000 лет. Титан и его сплавы устойчивы и перекиси водорода, бензине, феноле, формальдегиде. После многократной стерилизации кипячением и обработки в автоклаве, многомесячной выдержки в 3%-ном растворе хлорамина, 96-градусиом этиловом спирте, растворе сулемы, трихлорэтилене следов коррозии на титановых сплавах не обнаружено. Точечная коррозия наблюдается у титановых сплавов лишь после пребывания в течение нескольких суток в 10%-ной спиртовой настойке йода.

Титан и его сплавы обладают высокой усталостной прочностью при знакопеременных нагрузках, что очень важно при изготовлении внутрикостных фиксаторов, наружных и внутренних протезов, которые постоянно подвергаются переменным нагрузкам.

Титан - пластичный металл; он хорошо поддается механической обработке: резанию, сверлению, фрезерованию, шлифованию. Изготавливать из него различные конструкции не труднее, чем из нержавеющей стали. Титан - немагнитный материал с низкой электропроводностью, что особенно ценно, так как благодаря этому можно использовать физиотерапию для лечения больных, в организме которых находятся титановые конструкции. Все это делает титан весьма перспективным для широкого применения в медицине.

Но самым важным результатом многолетних и тщательных исследований оказалось то, что титан является инертным металлом по отношению к биологической среде. Конструкции из титановых сплавов хорошо переносится человеческим организмом, обрастает костной и мышечной тканью. Металл практически не корродирует в агрессивных средах человеческого тела, а структура тканей, окружающих титановые конструкции, не изменяется на протяжении длительного времени. Своей химической индифферентностью титан превосходит не только все нержавеющие стали, но и нашедший в последнее время широкое применение «виталлиум» - сплав на кобальтовой основе. Ценно, что технически чистый титан содержит гораздо меньше примесей, чем другие используемые в медицине сплавы.

К главной подгруппе VI группы периодической системы относятся кислород, сера, селен, теллур и полоний. Неметаллические свойства у элементов VI-А группы выражены менее ярко, чем у галогенов. Валентными уних являются электроны ns 2 np 4 .

Так как атомы элементов VI-А группы содержат на внешнем слое шесть электронов, то они стремятся к заполнению электронами внешнего энергетического уровня и для них характерно образование анионов Э 2- . К образованию катионов атомы рассматриваемых элементов (кроме полония) не склонны.

Кислород и сера - типичные неметаллы, причем кислород относится к самым электроотрицательным элементам (на втором месте после фтора). Полоний - металл серебристо-белого цвета, напоминающий по физическим свойствам свинец, а по электрохимическим свойствам - благородные металлы. Селен и теллур занимают промежуточное положение между металлами и неметаллами, они являются полупроводниками. По химическим свойствам они стоят ближе к неметаллам. Кислород, серу, селен и теллур объединяют в группу "халькогенов", что в переводе с греческого языка означает "порождающие руды". Эти элементы входят в состав многочисленных руд. От кислорода к теллуру содержание элементов на Земле резко падает. Полоний не имеет стабильных изотопов и встречается в урановых и ториевых рудах, как один из продуктов распада радиоактивного урана.

По своим свойствам кислород и сера резко отличаются друг от друга, т.к. электронные оболочки предыдущего энергетического уровня построены у них различно. Теллур и полоний имеют одинаковое строение внешнего энергетического уровня (валентного слоя) и предпоследнего энергетического уровня, поэтому они в большей степени схожи по своим свойствам.

Кислород -- химически активный неметалл, является самым лёгким элементом из группы халькогенов. Простое вещество кислород при нормальных условиях -- газ без цвета, вкуса и запаха, молекула которого состоит из двух атомов кислорода (формула O 2), в связи с чем его также называют дикислород. Жидкий кислород имеет светло-голубой цвет, а твёрдый представляет собой кристаллы светло-синего цвета.Существуют и другие аллотропные формы кислорода, например, озон -- при нормальных условиях газ голубого цвета со специфическим запахом, молекула которого состоит из трёх атомов кислорода (формула O3).Слово кислород (именовался в начале XIX века ещё «кислотвором») своим появлением в русском языке до какой-то степени обязано М. В. Ломоносову, который ввёл в употребление, наряду с другими неологизмами, слово «кислота»; таким образом слово «кислород», в свою очередь, явилось калькой термина «оксиген» (фр. oxygиne), предложенного А. Лавуазье (от др.-греч. ?оэт -- «кислый» и геннЬщ -- «рождаю»), который переводится как «порождающий кислоту», что связано с первоначальным значением его -- «кислота», ранее подразумевавшим вещества, именуемые по современной международной номенклатуре оксидами. Кислород -- самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн).В настоящее время в промышленности кислород получают из воздуха. Основным промышленным способом получения кислорода является криогенная ректификация. Также хорошо известны и успешно применяются в промышленности кислородные установки, работающие на основе мембранной технологии.

В лабораториях пользуются кислородом промышленного производства, поставляемым в стальных баллонах под давлением около 15 МПа.

Небольшие количества кислорода можно получать нагреванием перманганата калия KMnO4:

Используют также реакцию каталитического разложения пероксида водорода Н 2 О 2 в присутствии оксида марганца(IV):

Кислород можно получить каталитическим разложением хлората калия (бертолетовой соли) KClO 3:

К лабораторным способам получения кислорода относится метод электролиза водных растворов щелочей, а также разложение оксида ртути(II) (при t = 100 °C):

На подводных лодках обычно получается реакцией пероксида натрия и углекислого газа, выдыхаемого человеком:

Сильный окислитель, взаимодействует практически со всеми элементами, образуя оксиды. Степень окисления?2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры. Пример реакций, протекающих при комнатной температуре:

Окисляет соединения, которые содержат элементы с не максимальной степенью окисления:

Окисляет большинство органических соединений:

При определённых условиях можно провести мягкое окисление органического соединения:

Кислород реагирует непосредственно (при нормальных условиях, при нагревании и/или в присутствии катализаторов) со всеми простыми веществами, кроме Au и инертных газов (He, Ne, Ar, Kr, Xe, Rn); реакции с галогенами происходят под воздействием электрического разряда или ультрафиолета. Косвенным путём получены оксиды золота и тяжёлых инертных газов (Xe, Rn). Во всех двухэлементных соединениях кислорода с другими элементами кислород играет роль окислителя, кроме соединений со фтором.

Кислород образует пероксиды со степенью окисления атома кислорода, формально равной?1.

Например, пероксиды получаются при сгорании щелочных металлов в кислороде:

Некоторые оксиды поглощают кислород:

По теории горения, разработанной А. Н. Бахом и К. О. Энглером, окисление происходит в две стадии с образованием промежуточного пероксидного соединения. Это промежуточное соединение можно выделить, например, при охлаждении пламени горящего водорода льдом, наряду с водой, образуется пероксид водорода:

В надпероксидах кислород формально имеет степень окисления?Ѕ, то есть один электрон на два атома кислорода (ион O ?2). Получают взаимодействием пероксидов с кислородом при повышенных давлении и температуре:

Калий K, рубидий Rb и цезий Cs реагируют с кислородом с образованием надпероксидов:

Неорганические озонидыы содержат ион O?3 со степенью окисления кислорода, формально равной?1/3. Получают действием озона на гидроксиды щелочных металлов:

Сера -- элемент главной подгруппы VI группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 16. Проявляет неметаллические свойства. Обозначается символом S (лат. sulfur). В водородных и кислородных соединениях находится в составе различных ионов, образует многие кислоты и соли. Многие серосодержащие соли малорастворимы в воде. Сера является шестнадцатым по химической распространённости элементом в земной коре. Встречается в свободном (самородном) состоянии и связанном виде.

Важнейшие природные минералы серы: FeS 2 -- железный колчедан или пирит, ZnS -- цинковая обманка или сфалерит (вюрцит), PbS -- свинцовый блеск или галенит, HgS -- киноварь, Sb 2 S 3 -- антимонит. Кроме того, сера присутствует в нефти, природном угле, природных газах и сланцах. Сера -- шестой элемент по содержанию в природных водах, встречается в основном в виде сульфат-иона и обуславливает «постоянную» жёсткость пресной воды. Жизненно важный элемент для высших организмов, составная часть многих белков, концентрируется в волосах. Слово «сера», известное в древнерусском языке с XV в., заимствовано из старославянского «с?ра» -- «сера, смола», вообще «горючее вещество, жир». Этимология слова не выяснена до настоящих времен, поскольку первоначальное общеславянское название вещества утрачено и слово дошло до современного русского языка в искаженном виде.

По предположению Фасмера, «сера» восходит к лат. sera -- «воск» или лат. serum -- «сыворотка».

Латинское sulfur (происходящее из эллинизированного написания этимологического sulpur) предположительно восходит к индоевропейскому корню swelp -- «гореть». На воздухе сера горит, образуя сернистый ангидрид -- бесцветный газ с резким запахом:

С помощью спектрального анализа установлено, что на самом деле процесс окисления серы в двуокись представляет собой цепную реакцию и происходит с образованием ряда промежуточных продуктов: моноокиси серы S 2 O 2 , молекулярной серы S 2 , свободных атомов серы S и свободных радикалов моноокиси серы SO.

Восстановительные свойства серы проявляются в реакциях серы и с другими неметаллами, однако при комнатной температуре сера реагирует только со фтором.

Расплав серы реагирует с хлором, при этом возможно образование двух низших хлоридов (дихлорид серы и дитиодихлорид)

При избытке серы также образуются разнообразные дихлориды полисеры типа SnCl 2 .

При нагревании сера также реагирует с фосфором, образуя смесь сульфидов фосфора, среди которых -- высший сульфид P 2 S 5:

Кроме того, при нагревании сера реагирует с водородом, углеродом, кремнием:

  • (сероводород)
  • (сероуглерод)

При нагревании сера взаимодействует со многими металлами, часто -- весьма бурно. Иногда смесь металла с серой загорается при поджигании. При этом взаимодействии образуются сульфиды:

Растворы сульфидов щелочных металлов реагируют с серой с образованием полисульфидов:

Из сложных веществ следует отметить прежде всего реакцию серы с расплавленной щёлочью, в которой сера диспропорционирует аналогично хлору:

Полученный сплав называется серной печенью.

С концентрированными кислотами-окислителями (HNO 3 , H 2 SO 4) сера реагирует только при длительном нагревании:

  • (конц.)
  • (конц.)

При увеличении температуры в парах серы происходят изменения в количественном молекулярном составе. Число атомов в молекуле уменьшается:

При 800--1400 °C пары состоят в основном из двухатомной серы:

А при 1700 °C сера становится атомарной:

Сера -- один из биогенных элементов. Сера входит в состав некоторых аминокислот (цистеин, метионин), витаминов (биотин, тиамин), ферментов. Сера участвует в образовании третичной структуры белка (формирование дисульфидных мостиков). Также сера участвует в бактериальном фотосинтезе (сера входит в состав бактериохлорофилла, а сероводород является источником водорода). Окислительно-восстановительные реакции серы -- источник энергии в хемосинтезе.

Человек содержит примерно 2 г серы на 1 кг своего веса

Селен -- химический элемент 16-й группы (по устаревшей классификации -- главной подгруппы VI группы), 4-го периода в периодической системе, имеет атомный номер 34, обозначается символом Se (лат. Selenium), хрупкий блестящий на изломе неметалл чёрного цвета (устойчивая аллотропная форма, неустойчивая форма -- киноварно-красная). Относится к халькогенам.

Название происходит от греч. уелЮнз -- Луна. Элемент назван так в связи с тем, что в природе он является спутником химически сходного с ним теллура (названного в честь Земли).Содержание селена в земной коре -- около 500 мг/т. Основные черты геохимии селена в земной коре определяются близостью его ионного радиуса к ионному радиусу серы. Селен образует 37 минералов, среди которых в первую очередь должны быть отмечены ашавалит FeSe, клаусталит PbSe, тиманнит HgSe, гуанахуатит Bi 2 (Se, S) 3, хастит CoSe 2 , платинит PbBi2(S, Se) 3 , ассоциирующие с различными сульфидами, а иногда также с касситеритом. Изредка встречается самородный селен. Главное промышленное значение на селен имеют сульфидные месторождения. Содержание селена в сульфидах колеблется от 7 до 110 г/т. Концентрация селена в морской воде 4·10?4 мг/л.

Селен -- аналог серы и проявляет степени окисления?2(H 2 Se), +4(SeO 2) и +6 (H 2 SeO 4). Однако, в отличие от серы, соединения селена в степени окисления +6 -- сильнейшие окислители, а соединения селена (-2) -- гораздо более сильные восстановители, чем соответствующие соединения серы.

Простое вещество селен гораздо менее активно химически, чем сера. Так, в отличие от серы, селен не способен гореть на воздухе самостоятельно. Окислить селен удаётся только при дополнительном нагревании, при котором он медленно горит синим пламенем, превращаясь в двуокись SeO 2 . Со щелочными металлами селен реагирует (весьма бурно), только будучи расплавленным.

В отличие от SO 2 , SeO 2 -- не газ, а кристаллическое вещество, хорошо растворимое в воде. Получить селенистую кислоту (SeO 2 + H 2 O > H 2 SeO 3) ничуть не сложнее, чем сернистую. А действуя на неё сильным окислителем (например, HClO 3), получают селеновую кислоту H 2 SeO 4 , почти такую же сильную, как серная.

Входит в состав активных центров некоторых белков в форме аминокислоты селеноцистеина. Микроэлемент, но большинство соединений достаточно токсично (селеноводород, селеновая и селенистая кислота) даже в средних концентрациях.

Одним из важнейших направлений его технологии, добычи и потребления являются полупроводниковые свойства как самого селена, так и его многочисленных соединений (селенидов), их сплавов с другими элементами, в которых селен стал играть ключевую роль. Эта роль селена постоянно растёт, растёт спрос и цены (отсюда дефицит этого элемента).

В современной технологии полупроводников применяются селениды многих элементов, например, селениды олова, свинца, висмута, сурьмы, селениды лантаноидов. Особенно важны свойства фотоэлектрические и термоэлектрические как самого селена, так и селенидов.

Стабильный изотоп селен-74 позволил на своей основе создать плазменный лазер с колоссальным усилением в ультрафиолетовой области (около миллиарда раз).

Радиоактивный изотоп селен-75 используется в качестве мощного источника гамма-излучения для дефектоскопии.

Селенид калия совместно с пятиокисью ванадия применяется при термохимическом получении водорода и кислорода из воды (селеновый цикл, Ливерморская национальная лаборатория им. Лоуренса, Ливермор, США).

Полупроводниковые свойства селена в чистом виде широко использовались в середине 20-го века для изготовления выпрямителей, особенно в военной технике по следующим причинам: в отличие от германия, кремния, селен малочувствителен к радиации, и, кроме того, селеновый выпрямительный диод обладает уникальным свойством самовосстанавливаться при пробое: место пробоя испаряется и не приводит к короткому замыканию, допустимый ток диода несколько снижается, но изделие остается функциональным. К недостаткам селеновых выпрямителей относятся их значительные габариты.