Действия над числами с минусами и плюсами. Сложение и вычитание положительных и отрицательных чисел. Правило вычитания отрицательных чисел

В ыработка вычислительных навыков – важнейшая цель, преследуемая программами по математике с 1 по 6 класс. От того, насколько быстро и правильно ребенок научится выполнять арифметические действия, будет зависеть скорость выполнения им логических (смысловых) операции в старших класах и уровень понимания предмета в целом. Репетитор по математике довольно часто сталкивается с вычислительными проблемами учащихся, мешающими добиваться высоких результатов.

С какими только учениками не приходится работать репетитору. Родителям нужна подготовка к ЕГЭ по математике , а их чадо не может разобраться в обыкновенных дробях или путается в отрицательных числах. Какие действия должны предприниматься репетитором по математике в таких случаях? Как помочь ученику? Времени на неспешное и последовательное изучение правил у репетитора нет, поэтому традиционные методы часто приходится заменять некими искусственными «полуфабрикатами-ускорителями», если можно так выразиться. В этой статье я опишу один из возможных путей формирования навыка выполнения действий с отрицательными числами, а именно вычитания таковых.

Предположим, что репетитор по математике имеет удовольствие работать с очень слабым учеником, знания которого дальше простейших вычислений с положительными числами не распространяются. Предположим также, что репетитору удалось объяснить законы сложения и вплотную подойти к правилу a-b=a+(-b). Какие моменты должен учесть репетитор по математике?

Сведения вычитания к сложению не является простым и очевидным преобразованием. Учебники предлагают строгие и точные математические формулировки: «Чтобы из числа «а» вычесть число «b» надо к числу «а» прибавить число, противоположное к « b». Формально к тексту не придерешься, но как только он начинает применяться репетитором по математике в качестве инструкции к выполнению конкретных вычислений — возникают проблемы. Одна только фраза чего стоит: «Чтобы вычесть – надо прибавить». Без внятного комментария репетитора ученик не разберется. В самом деле, что же делать: вычитать или складывать?

Если работать с правилом согласно замыслу авторов учебника, то помимо отработки понятия «противоположное число», нужно научить школьника соотносить обозначения «а» и «b» с реальными числами в примере. А на это потребуется время. Учитывая еще и тот факт, что ученик думает и пишет одновременно, задача репетитора по математике еще большет усложняется. Хорошей зрительной, смысловой и двигательной памятью слабый ученик не обладает, а поэтому лучше предложить альтернативный текст правила:

Чтобы из первого числа вычесть второе, нужно
А) Первое число переписать
Б) Поставить плюс
B) Заменить знак второго числа на противоположный
Г) Сложить полученные числа

Здесь этапы алгоритма четко разделяются по пунктам и не привязываются к буквенным обозначениям.

По ходу решения практического задания на переводы, репетитор по математике перечитывает этот текст ученику по нескольку раз (для запоминания). Я советую записать его в теоретическую тетрадь. Только после отработки правила перехода к сложению можно записать общую форму a-b=a+(-b)

Движение знаков «минус» и «плюс» в голове ребенка (как маленького, так и слабого взрослого) в чем-то напоминает броуновское. Навести порядок в этом хаосе репетитору по математике нужно как можно быстрее. В процессе решения примеров применяются опорные подсказки (словесные и визуальные), которые в сочетании аккуратным и подробным офофрмлением делают свое дело. Нужно помнить, что каждое слово, произнесенное репетитором по математике в момент решения любой задачи несет или подсказку или помеху. Каждая фраза анализируется ребенком на предмет установления связи с теми или иным математическим объектом (явлением) и его образом на бумаге.

Типичная проблема слабых школьников — отделение знака действия от знака числа в нем участвующего. Одинаковый визуальный образ мешает распознавать уменьшаемое «a» и вычитаемое «b» в разности a-b. Когда в процессе объяснений репетитор по математике читает выражение, нужно следить за тем, чтобы вместо «-» употреблялось слово «вычесть». Это обязательно! Например, запись следует читать так: «Из минус пяти вычесть минус три». Нельзя забывать и о правиле перевода в сложение: «Чтобы из числа «а» вычесть число «b» надо … ».

Если у репетитора по математике постоянно слетит с языка «минус 5 минус минус 3», то понятно, что ученику будет труднее представить себе структуру примера. Однозначное соответствие между словом и арифметическим действием помогает репетитору по математике точно транслировать информацию.

Как репетитору объяснить переход к сложению?

Конечно, можно обратиться к определению понятия «вычесть» и искать число, которое надо прибавить к «b» для получения «а». Однако, слабый ученик мыслит далек от строгой математики и репетитору в работе с ним потребуются некие аналогии с простыми действиями. Я часто говорю своим шестиклашкам: «В математике нет такого арифметического действия, как «разность». Запись 5 – 3 является простым обозначением результата сложения 5+(-3). Знак «плюс» просто опускают и не пишут».

Дети удивляются словам репетитора и непроизвольно запоминают, что нельзя вычитать числа напрямую. Репетитор по математике объявляет 5 и -3 слагаемыми, и для большей убудительности своих слов сравнивает результаты действий 5-3 и 5+(-3). После этого записывается тождество a-b=a+(-b)

Каков бы ни был ученик, и сколько бы времени не отводилось репетитору по математике на занятия с ним, нужно вовремя отработать понятие «противоположное число». Отдельного внимания репетитора по математике заслуживает запись «-х». Ученик 6 класса должен усвоить, что она отображает не отрицательное число, а противоположное к иксу.

Необходимо отдельно остановиться на вычислениях с двумя знаками «минус», расположенными рядом. Возникает проблема понимания операции их одновременного удаления. Нужно аккуратно пройти по всем пунктам изложенного алгоритма перехода к сложению. Будет лучше, если в работе с разностью -5- (-3) до каких-либо комментариев репетитор по математике выделит числа -5 и -3 в рамочку или подчеркнет их. Это поможет ученику выделить компоненты действия.

Нацеленность репетитора по математике на запоминание

Надежное запоминание – результат практического применения математических правил, поэтому репетитору важно обеспечить хорошую плотность самостоятельно решенных примеров. Для улучшения устойчиваости запоминания можно призвать на помощь визуальные подсказки — фишечки. Например, интересный способ перевовода вычитания отрицательного числа в сложение. Репетитор по математике соединяет два минуса одной линией (как показано на рисунке), и взору ученика открывается знак «плюс» (в пересечении со скобкой).

Для предотвращения рассеивания внимания я рекомендую репетиторам по математике выделять уменьшаемое и вычитаемое рамками. Если репетитор по математике использует рамки или кружочки для выделения компонентов арифметического действия, то ученик легче и быстрее найчится видеть структуру примера и соотносить ее с соответствующим правилом. Не следует располагать кусочки целого объекта при оформлении решений на разных строчках тетрадного листа, а также приступать к сложению до тех пор, пока оно не будет записано. Все действия и переходы в обязательном порядке показываются (по крайней мере на старте изучения темы).

Некоторые репетиторы по математике стремятся к 100% точному обоснованию правил перевода, считая эту стратегию единственно правильной и полезной для формирования вычислительных навыков. Однако, практика показывает, что этот путь не всегда приносит хорошие дивиденды. Потребность в осознании того, что человек делает, чаще всего появляется после запоминания этапов применяемого алгоритма и практического закрепления вычислительных операций.

Крайне важно отработать переход к сумме в длинном числовом выражении с несколькими вычитаниями, например . Перед тем, как приступить к подсчету или преобразованию, я заставляю ученика обвести в кружочки числа вместе с их знаками, расположенными слева. На рисунке показан пример того, как репетитор по математкие выделяет слагаемые Для очень слабых шестиклассников можно дополнительно подкрашивать кружочки. Для положительных слагаемых использовать один цвет, а для отрицательных другой. В особых случаях беру в руки ножницы и режу выражение на кусочки. Их можно произвольно перекладывать, иммитируя таким образом перестановку слагаемых. Ребенок увидит, что знаки перемещаются вместе с самими слагаемыми. То есть, если знак минус стоял слева от числа 5, то куда бы мы не перекладывали соответствующую карточку, он от пятерки не оторвется.

Колпаков А.Н. Репетитор по математике 5-6 класс. Москва. Строгино .

Правило сложения отрицательных чисел

Если вспомнить урок математики и тему «Сложение и вычитание чисел с разными знаками», то для сложения двух отрицательных чисел необходимо:

  • выполнить сложение их модулей;
  • дописать к полученной сумме знак «–».

Согласно правилу сложения можно записать:

$(−a)+(−b)=−(a+b)$.

Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

Пример 1

Сложить отрицательные числа $−185$ и $−23 \ 789.$

Решение .

Воспользуемся правилом сложения отрицательных чисел.

Найдем модули данных чисел:

$|-23 \ 789|=23 \ 789$.

Выполним сложение полученных чисел:

$185+23 \ 789=23 \ 974$.

Поставим знак $«–»$ перед найденным числом и получим $−23 \ 974$.

Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.

Ответ : $−23 \ 974$.

При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

Пример 2

Сложить отрицательные числа $-\frac{1}{4}$ и $−7,15$.

Решение.

Согласно правилу сложения отрицательных чисел, сначала необходимо найти сумму модулей:

$|-\frac{1}{4}|=\frac{1}{4}$;

Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

$\frac{1}{4}=0,25$;

$0,25+7,15=7,40$.

Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

Краткая запись решения:

$(-\frac{1}{4})+(−7,15)=−(\frac{1}{4}+7,15)=–(0,25+7,15)=−7,4$.

Для сложения положительного и отрицательного числа необходимо:

  1. вычислить модули чисел;
  2. выполнить сравнение полученных чисел:

    • если они равны, то исходные числа являются противоположными и их сумма равна нулю;
    • если они не равны, то нужно запомнить знак числа, у которого модуль больше;
  3. из большего модуля вычесть меньший;

  4. перед полученным значением поставить знак того числа, у которого модуль больше.

Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

Пример 3

Сложить числа $4$ и $−8$.

Решение.

Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

Найдем модули данных чисел:

Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

Краткая запись решения:

$4+(–8) = –(8–4) = –4$.

Ответ : $4+(−8)=−4$.

Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

Вычитание чисел с разными и отрицательными знаками

Правило вычитания отрицательных чисел:

Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

Согласно правилу вычитания можно записать:

$a−b=a+(−b)$.

Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

Пример 4

Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

Решение.

Противоположное число для числа $–5$ – это число $5$.

Согласно правилу вычитания отрицательных чисел получим:

$(−28)−(−5)=(−28)+5$.

Выполним сложение чисел с противоположными знаками:

$(−28)+5=−(28−5)=−23$.

Ответ : $(−28)−(−5)=−23$.

При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

Сложение и вычитание чисел с разными знаками

Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

Пример 5

Вычесть положительное число $7$ из отрицательного числа $−11$.

Решение.

Противоположное число для числа $7$ – это число $–7$.

Согласно правилу вычитания чисел с противоположными знаками получим:

$(−11)−7=(–11)+(−7)$.

Выполним сложение отрицательных чисел:

$(−11)+(–7)=−(11+7)=−18$.

Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

Ответ : $(−11)−7=−18$.

При вычитании дробных чисел с разными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

В этой статье мы разберем, как выполняется из произвольных чисел. Здесь мы дадим правило вычитания отрицательных чисел, и рассмотрим примеры применения этого правила.

Навигация по странице.

Имеет место следующее правило вычитания отрицательных чисел : чтобы из числа a вычесть отрицательное число b , нужно к уменьшаемому a прибавить число −b , противоположное вычитаемому b .

В буквенном виде правило вычитания отрицательного числа b из произвольного числа a выглядит так: a−b=a+(−b) .

Докажем справедливость данного правила вычитания чисел.

Для начала напомним смысл вычитания чисел a и b . Найти разность чисел a и b — это значит найти такое число с, сумма которого с числом b равна a (смотрите связь вычитания со сложением). То есть, если найдено число с такое, что c+b=a , то разность a−b равна c .

Таким образом, чтобы доказать озвученное правило вычитания, достаточно показать, что прибавление к сумме a+(−b) числа b даст число a . Чтобы это показать, обратимся к свойствам действий с действительными числами . В силу сочетательного свойства сложения справедливо равенство (a+(−b))+b=a+((−b)+b) . Так как сумма противоположных чисел равна нулю, то a+((−b)+b)=a+0 , а сумма a+0 равна a , так как прибавление нуля не изменяет число. Таким образом, доказано равенство a−b=a+(−b) , а значит, доказана и справедливость приведенного правила вычитания отрицательных чисел.

Мы доказали данное правило для действительных чисел a и b . Однако, это правило справедливо и для любых рациональных чисел a и b , а также для любых целых чисел a и b , так как действия с рациональными и целыми числами тоже обладают свойствами, которые мы использовали при доказательстве. Отметим, что с помощью разобранного правила можно выполнять вычитание отрицательного числа как из положительного числа, так и из отрицательного числа, а также из нуля.

Осталось рассмотреть, как выполняется вычитание отрицательных чисел с помощью разобранного правила.

Примеры вычитания отрицательных чисел

Рассмотрим примеры вычитания отрицательных чисел . Начнем с решения простого примера, чтобы разобраться со всеми тонкостями процесса, не утруждаясь вычислениями.

Отнимите от отрицательного числа −13 отрицательное число −7 .

Числом, противоположным вычитаемому −7 , является число 7 . Тогда по правилу вычитания отрицательных чисел имеем (−13)−(−7)=(−13)+7 . Осталось выполнить сложение чисел с разными знаками, получаем (−13)+7=−(13−7)=−6 .

Вот все решение: (−13)−(−7)=(−13)+7=−(13−7)=−6 .

Вычитание дробных отрицательных чисел можно выполнить, осуществив переход к соответствующим обыкновенным дробям, смешанным числам или десятичным дробям. Здесь стоит отталкиваться от того, с какими числами удобнее работать.

Выполните вычитание из числа 3,4 отрицательного числа .

Применив правило вычитания отрицательных чисел, имеем . Теперь заменим десятичную дробь 3,4 смешанным числом: (смотрите перевод десятичных дробей в обыкновенные дроби), получаем . Осталось выполнить сложение смешанных чисел: .

На этом вычитание отрицательного числа из числа 3,4 завершено. Приведем краткую запись решения: .

.

Вычитание отрицательных чисел

Как известно вычитание - это действие, противоположное сложению.

Если « a » и « b » - положительные числа, то вычесть из числа « a » число « b », значит найти такое число « c », которое при сложении « с » числом « b » даёт число « a ».

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа « b » - это тоже самое сложение, но с числом противоположным числу « b ».

Стоит запомнить выражения ниже.

Правила вычитания отрицательных чисел

Как видно из примеров выше вычитание числа « b » - это сложение с числом противоположным числу « b ».

Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел .

Удобно запомнить правило знаков , которое позволяет уменьшить количество скобок.

Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем « + », а если знаки разные, то получаем « − ».

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всеми числами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.

Вычитание отрицательных чисел правило

Действия с отрицательными и положительными числами

Абсолютная величина (модуль). Сложение.

Вычитание. Умножение. Деление.

Абсолютная величина (модуль). Для отрицательного числа – это положительное число, получаемое от перемены его знака с « – » на « + »; для положительного числа и нуля – само это число. Для обозначения абсолютной величины (модуля) числа используются две прямые черты, внутри которых записывается это число.

П р и м е р ы: | – 5 | = 5, | 7 | = 7, | 0 | = 0.

1) при сложении двух чисел с одинаковыми знаками складываются

их абсолютные величины и перед суммой ставится общий знак.

2) при сложении двух чисел с разными знаками их абсолютные

величины вычитаются (из большей меньшая) и ставится знак

числа с большей абсолютной величиной.

Вычитание. Можно заменить вычитание двух чисел сложением, при этом уменьшаемое сохраняет свой знак, а вычитаемое берётся с обратным знаком.

(+ 8) – (+ 5) = (+ 8) + (– 5) = 3;

(+ 8) – (– 5) = (+ 8) + (+ 5) = 13;

(– 8) – (– 5) = (– 8) + (+ 5) = – 3;

(– 8) – (+ 5) = (– 8) + (– 5) = – 13;

Умножение. При умножении двух чисел их абсолютные величины умножаются, а произведение принимает знак « + » , если знаки сомножителей одинаковы, и знак « – » , если знаки сомножителей разные.

Полезна следующая схема (правила знаков при умножении ):

При умножении нескольких чисел (двух и более) произведение имеет знак « + » , если число отрицательных сомножителей чётно, и знак « – » , если их число нечётно.

Деление. При делении двух чисел абсолютная величина делимого делится на абсолютную величину делителя, а частное принимает знак « + » , если знаки делимого и делителя одинаковы, и знак « – » , если знаки делимого и делителя разные.

Здесь действуют те же правила знаков, что и при умножении :

Сложение и вычитание положительных и отрицательных чисел

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Правило сложения отрицательных чисел

Для сложения двух отрицательных чисел необходимо:

  • выполнить сложение их модулей;
  • дописать к полученной сумме знак «–».

Согласно правилу сложения можно записать:

Правило сложения отрицательных чисел применяется к отрицательным целым, рациональным и действительным числам.

Сложить отрицательные числа $−185$ и $−23 \ 789.$

Воспользуемся правилом сложения отрицательных чисел.

Найдем модули данных чисел:

Выполним сложение полученных чисел:

$185+23 \ 789=23 \ 974$.

Поставим знак $«–»$ перед найденным числом и получим $−23 974$.

Краткая запись решения: $(−185)+(−23 \ 789)=−(185+23 \ 789)=−23 \ 974$.

При сложении отрицательных рациональных чисел их необходимо преобразовать к виду натуральных чисел, обыкновенных или десятичных дробей.

Сложить отрицательные числа $-\frac $ и $−7,15$.

Согласно правилу сложения отрицательных чисел сначала необходимо найти сумму модулей:

Полученные значения удобно свести к десятичным дробям и выполнить их сложение:

Поставим перед полученным значением знак $«–»$ и получим $–7,4$.

Краткая запись решения:

Сложение чисел с противоположными знаками

Правило сложения чисел с противоположными знаками:

  • вычислить модули чисел;
  • выполнить сравнение полученных чисел:

если они равны, то исходные числа являются противоположными и их сумма равна нулю;

если они не равны, то нужно запомнить знак числа, у которого модуль больше;

  • из большего модуля вычесть меньший;
  • перед полученным значением поставить знак того числа, у которого модуль больше.

Сложение чисел с противоположными знаками сводится к вычитанию из большего положительного числа меньшего отрицательного числа.

Правило сложения чисел с противоположными знаками выполняется для целых, рациональных и действительных чисел.

Сложить числа $4$ и $−8$.

Требуется выполнить сложение чисел с противоположными знаками. Воспользуемся соответствующим правилом сложения.

Найдем модули данных чисел:

Модуль числа $−8$ больше модуля числа $4$, т.е. запомним знак $«–»$.

Поставим знак $«–»$, который запоминали, перед полученным числом, и получим $−4.$

Краткая запись решения:

Лень читать?

Задай вопрос специалистам и получи
ответ уже через 15 минут!

Для сложения рациональных чисел с противоположными знаками их удобно представить в виде обыкновенных или десятичных дробей.

Вычитание отрицательных чисел

Правило вычитания отрицательных чисел:

Для вычитания из числа $a$ отрицательного числа $b$ необходимо к уменьшаемому $a$ добавить число $−b$, которое является противоположным вычитаемому $b$.

Согласно правилу вычитания можно записать:

Данное правило справедливо для целых, рациональных и действительных чисел. Правило можно использовать при вычитании отрицательного числа из положительного числа, из отрицательного числа и из нуля.

Вычесть из отрицательного числа $−28$ отрицательное число $−5$.

Противоположное число для числа $–5$ – это число $5$.

Согласно правилу вычитания отрицательных чисел получим:

Выполним сложение чисел с противоположными знаками:

При вычитании отрицательных дробных чисел необходимо выполнить преобразование чисел к виду обыкновенных дробей, смешанных чисел или десятичных дробей.

Вычитание чисел с противоположными знаками

Правило вычитания чисел с противоположными знаками совпадает с правилом вычитания отрицательных чисел.

Вычесть положительное число $7$ из отрицательного числа $−11$.

Противоположное число для числа $7$ – это число $–7$.

Согласно правилу вычитания чисел с противоположными знаками получим:

Выполним сложение отрицательных чисел:

Краткая запись решения: $(−28)−(−5)=(−28)+5=−(28−5)=−23$.

При вычитании дробных чисел с противоположными знаками необходимо выполнить преобразование чисел к виду обыкновенных или десятичных дробей.

Так и не нашли ответ
на свой вопрос?

Просто напиши с чем тебе
нужна помощь

Вычитание отрицательного числа, правило, примеры

Данная статья посвящена разбору такой темы, как выполнение вычитания отрицательных чисел. Материал представляет собой полезную информацию о правиле вычитания отрицательных чисел и других определениях. Для закрепления сути параграфа мы детально разберем примеры типичных упражнений и задач.

Правило вычитания отрицательных чисел

Для того, чтобы разобраться в данной теме, следует узнать основные определения и понятия.

Правило вычитания отрицательных чисел формулируется так: чтобы из числа a вычесть число b со знаком минус , необходимо к уменьшаемому a прибавить число − b , которое является противоположным вычитаемому b .

Если представить данное правило вычитания отрицательного числа b из произвольного числа a в буквенном виде, то оно будет выглядеть так: a − b = a + (− b) .

Для того, чтобы использовать данное правило, необходимо доказать его справедливость.

Возьмем числа a и b . Чтобы вычесть из числа a число b , необходимо найти такое число с , которое в сумме с числом b будет равняться числу a . Другими словами, если найдено такое число c , что c + b = a , то разность a − b равна c .

Для того, чтобы доказать правило вычитания, необходимо показать, что сложение суммы a + (− b) с числом b – это есть число a . Необходимо вспомнить о свойствах действий с действительными числами. Так как в этом случае работает сочетательное свойство сложения, то равенство (a + (− b)) + b = a + ((− b) + b) будет верным.

Так, как сумма чисел с противоположными знаками равняется нулю, то a + ((− b) + b) = a + 0 , а сумма a + 0 = а (если к числу прибавить нуль, то оно не изменится). Равенство a − b = a + (− b) считается доказанным, значит, доказана и справедливость приведенного правила вычитания чисел со знаком минус.

Мы рассмотрели, как работает данное правило для действительных чисел a и b . Но оно также считается справедливым для любых рациональных и целых чисел a и b . Действия с рациональными и целыми числами также обладают свойствами, использованными при доказательстве. Следует добавить, что с помощью разобранного правила можно выполнять действия числа со знаком минус как из положительного числа, так и из отрицательного или нуля.

Рассмотрим разобранное правило на типичных примерах.

Примеры использования правила вычитания

Рассмотрим примеры с вычитанием чисел. Для начала рассмотрим простой пример, который поможет легко разобраться со всеми тонкостями процесса.

Необходимо отнять от числа − 13 число − 7 .

Возьмем число, противоположное вычитаемому − 7 . Это число 7 . Тогда по правилу вычитания отрицательных чисел имеем (− 13) − (− 7) = (− 13) + 7 . Выполняем сложение. Теперь получаем: (− 13) + 7 = − (13 − 7) = − 6 .

Вот все решение: (− 13) − (− 7) = (− 13) + 7 = − (13 − 7) = − 6 . (− 13) − (− 7) = − 6 . Вычитание дробных отрицательных чисел также можно выполнять. Необходимо перейти к обыкновенным дробям, смешанным числам или десятичным дробям. Выбор числа зависит от того, с каким вариантом вам удобнее работать.

Необходимо выполнить вычитание из числа 3 , 4 числа — 23 2 3 .

Применяем описанное выше правило вычитания, получаем 3 , 4 — — 23 2 3 = 3 , 4 + 23 2 3 . Заменяем дробь на десятичное число: 3 , 4 = 34 10 = 17 5 = 3 2 5 (как переводить дроби, можно посмотреть в материале по теме), получаем 3 , 4 + 23 2 3 = 3 2 5 + 23 2 3 . Выполняем сложение. На этом вычитание отрицательного числа — 23 2 3 из числа 3 , 4 завершено.

Приведем краткую запись решения: 3 , 4 — — 23 2 3 = 27 1 15 .

Необходимо выполнить вычитание числа − 0 , (326) от нуля.

По правилу вычитания, которое мы изучили выше, 0 − (− 0 , (326)) = 0 + 0 , (326) = 0 , (326) .

Последний переход верен, так как здесь работает свойство сложения числа с нулем: 0 − (− 0 , (326)) = 0 , (326) .

Из рассмотренных примеров видно, что при вычитании отрицательного числа может получиться как положительное, так и отрицательное число. Вычитание отрицательного числа может в результате дать и число 0 , это происходит, когда уменьшаемое равно вычитаемому.

Необходимо вычислить разность отрицательных чисел — 5 — — 5 .

По правилу вычитания мы получаем — 5 — — 5 = — 5 + 5 .

Мы пришли к сумме противоположных чисел, которая всегда равна нулю: — 5 — — 5 = — 5 + 5 = 0

В некоторых случаях результат вычитания необходимо записать в виде числового выражения. Это справедливо в тех случаях, когда уменьшаемое или вычитаемое является иррациональным числом. К примеру, вычитание из отрицательного числа − 2 отрицательного числа – π проводится так: (− 2) − (− π) = (− 2) + π = π − 2 . Значение полученного выражения может быть вычислено максимально точно только в том случае, если это необходимо. Для подробной информации можно изучить другие разделы, связанные с данной темой.

Если говорить просто, то это овощи, приготовленные в воде по специальному рецепту. Я буду рассматривать два исходных компонента (овощной салат и воду) и готовый результат - борщ. Геометрически это можно представить как прямоугольник, в котором одна сторона обозначает салат, вторая сторона обозначает воду. Сумма этих двух сторон будет обозначать борщ. Диагональ и площадь такого "борщевого" прямоугольника являются чисто математическими понятиями и никогда не используются в рецептах приготовления борща.


Как салат и вода превращаются в борщ с точки зрения математики? Как сумма двух отрезков может превратиться в тригонометрию? Чтобы понять это, нам понадобятся линейные угловые функции.


В учебниках математики вы ничего не найдете о линейных угловых функциях. А ведь без них не может быть математики. Законы математики, как и законы природы, работают независимо от того, знаем мы о их существовании или нет.

Линейные угловые функции - это законы сложения. Посмотрите, как алгебра превращается в геометрию, а геометрия превращается в тригонометрию.

Можно ли обойтись без линейных угловых функций? Можно, ведь математики до сих пор без них обходятся. Хитрость математиков заключается в том, что они всегда рассказывают нам только о тех задачах, которые они сами умеют решать, и никогда не рассказывают о тех задачах, которые они решать не умеют. Смотрите. Если нам известен результат сложения и одно слагаемое, для поиска другого слагаемого мы используем вычитание. Всё. Других задач мы не знаем и решать не умеем. Что делать в том случае, если нам известен только результат сложения и не известны оба слагаемые? В этом случае результат сложения нужно разложить на два слагаемых при помощи линейных угловых функций. Дальше мы уже сами выбираем, каким может быть одно слагаемое, а линейные угловые функции показывают, каким должно быть второе слагаемое, чтобы результат сложения был именно таким, какой нам нужен. Таких пар слагаемых может быть бесконечное множество. В повседневной жизни мы прекрасно обходимся без разложения суммы, нам достаточно вычитания. А вот при научных исследованиях законов природы разложение суммы на слагаемые очень может пригодиться.

Ещё один закон сложения, о котором математики не любят говорить (ещё одна их хитрость), требует, чтобы слагаемые имели одинаковые единицы измерения. Для салата, воды и борща это могут быть единицы измерения веса, объема, стоимости или единицы измерения.

На рисунке показаны два уровня различий для математических . Первый уровень - это различия в области чисел, которые обозначены a , b , c . Это то, чем занимаются математики. Второй уровень - это различия в области единиц измерения, которые показаны в квадратных скобках и обозначены буквой U . Этим занимаются физики. Мы же можем понимать третий уровень - различия в области описываемых объектов. Разные объекты могут иметь одинаковое количество одинаковых единиц измерения. Насколько это важно, мы можем увидеть на примере тригонометрии борща. Если мы добавим нижние индексы к одинаковому обозначению единиц измерения разных объектов, мы сможем точно говорить, какая математическая величина описывает конкретный объект и как она изменяется с течением времени или в связи с нашими действиями. Буквой W я обозначу воду, буквой S обозначу салат и буквой B - борщ. Вот как будут выглядеть линейные угловые функции для борща.

Если мы возьмем какую-то часть воды и какую-то часть салата, вместе они превратятся в одну порцию борща. Здесь я предлагаю вам немного отвлечься от борща и вспомнить далекое детство. Помните, как нас учили складывать вместе зайчиков и уточек? Нужно было найти, сколько всего зверушек получится. Что же нас тогда учили делать? Нас учили отрывать единицы измерения от чисел и складывать числа. Да, одно любое число можно сложить с другим любым числом. Это прямой путь к аутизму современной математики - мы делаем непонятно что, непонятно зачем и очень плохо понимаем, как это относится к реальности, ведь из трех уровней различия математики оперируют только одним. Более правильно будет научиться переходить от одних единиц измерения к другим.

И зайчиков, и уточек, и зверушек можно посчитать в штуках. Одна общая единица измерения для разных объектов позволяет нам сложить их вместе. Это детский вариант задачи. Давайте посмотрим на похожую задачу для взрослых. Что получится, если сложить зайчиков и деньги? Здесь можно предложить два варианта решения.

Первый вариант . Определяем рыночную стоимость зайчиков и складываем её с имеющейся денежной суммой. Мы получили общую стоимость нашего богатства в денежном эквиваленте.

Второй вариант . Можно количество зайчиков сложить с количеством имеющихся у нас денежных купюр. Мы получим количество движимого имущества в штуках.

Как видите, один и тот же закон сложения позволяет получить разные результаты. Всё зависит от того, что именно мы хотим знать.

Но вернемся к нашему борщу. Теперь мы можем посмотреть, что будет происходить при разных значениях угла линейных угловых функций.

Угол равен нулю. У нас есть салат, но нет воды. Мы не можем приготовить борщ. Количество борща также равно нулю. Это совсем не значит, что ноль борща равен нулю воды. Ноль борща может быть и при нуле салата (прямой угол).


Лично для меня, это основное математическое доказательство того факта, что . Ноль не изменяет число при сложении. Это происходит потому, что само сложение невозможно, если есть только одно слагаемое и отсутствует второе слагаемое. Вы к этому можете относиться как угодно, но помните - все математические операции с нулем придумали сами математики, поэтому отбрасывайте свою логику и тупо зубрите определения, придуманные математиками: "деление на ноль невозможно", "любое число, умноженное на ноль, равняется нулю", "за выколом точки ноль" и прочий бред. Достаточно один раз запомнить, что ноль не является числом, и у вас уже никогда не возникнет вопрос, является ноль натуральным числом или нет, потому что такой вопрос вообще лишается всякого смысла: как можно считать числом то, что числом не является. Это всё равно, что спрашивать, к какому цвету отнести невидимый цвет. Прибавлять ноль к числу - это то же самое, что красить краской, которой нет. Сухой кисточкой помахали и говорим всем, что " мы покрасили". Но я немного отвлекся.

Угол больше нуля, но меньше сорока пяти градусов. У нас много салата, но мало воды. В результате мы получим густой борщ.

Угол равен сорок пять градусов. Мы имеем в равных количествах воду и салат. Это идеальный борщ (да простят меня повара, это просто математика).

Угол больше сорока пяти градусов, но меньше девяноста градусов. У нас много воды и мало салата. Получится жидкий борщ.

Прямой угол. У нас есть вода. От салата остались только воспоминания, поскольку угол мы продолжаем измерять от линии, которая когда-то обозначала салат. Мы не можем приготовить борщ. Количество борща равно нулю. В таком случае, держитесь и пейте воду, пока она есть)))

Вот. Как-то так. Я могу здесь рассказать и другие истории, которые будут здесь более чем уместны.

Два друга имели свои доли в общем бизнесе. После убийства одного из них, всё досталось другому.

Появление математики на нашей планете.

Все эти истории на языке математики рассказаны при помощи линейных угловых функций. Как-нибудь в другой раз я покажу вам реальное место этих функций в структуре математики. А пока, вернемся к тригонометрии борща и рассмотрим проекции.

суббота, 26 октября 2019 г.

среда, 7 августа 2019 г.

Завершая разговор о , нужно рассмотреть бесконечное множество. Дало в том, что понятие "бесконечность" действует на математиков, как удав на кролика. Трепетный ужас перед бесконечностью лишает математиков здравого смысла. Вот пример:

Первоисточник находится . Альфа обозначает действительное число. Знак равенства в приведенных выражениях свидетельствует о том, что если к бесконечности прибавить число или бесконечность, ничего не изменится, в результате получится такая же бесконечность. Если в качестве примера взять бесконечное множество натуральных чисел, то рассмотренные примеры можно представить в таком виде:

Для наглядного доказательства своей правоты математики придумали много разных методов . Лично я смотрю на все эти методы, как на пляски шаманов с бубнами. По существу, все они сводятся к тому, что либо часть номеров не занята и в них заселяются новые гости, либо к тому, что часть посетителей вышвыривают в коридор, чтобы освободить место для гостей (очень даже по-человечески). Свой взгляд на подобные решения я изложил в форме фантастического рассказа о Блондинке. На чем основываются мои рассуждения? Переселение бесконечного количества посетителей требует бесконечно много времени. После того, как мы освободили первую комнату для гостя, один из посетителей всегда будет идти по коридору из своего номера в соседний до скончания века. Конечно, фактор времени можно тупо игнорировать, но это уже будет из разряда "дуракам закон не писан". Всё зависит от того, чем мы занимаемся: подгоняем реальность под математические теории или наоборот.

Что же такое "бесконечная гостиница"? Бесконечная гостиница - это гостиница, в которой всегда есть любое количество свободных мест, независимо от того, сколько номеров занято. Если все номера в бесконечном коридоре "для посетителей" заняты, есть другой бесконечный коридор с номерами "для гостей". Таких коридоров будет бесконечное множество. При этом у "бесконечной гостиницы" бесконечное количество этажей в бесконечном количестве корпусов на бесконечном количестве планет в бесконечном количестве вселенных, созданных бесконечным количеством Богов. Математики же не способны отстраниться от банальных бытовых проблем: Бог-Аллах-Будда - всегда только один, гостиница - она одна, коридор - только один. Вот математики и пытаются подтасовывать порядковые номера гостиничных номеров, убеждая нас в том, что можно "впихнуть невпихуемое".

Логику своих рассуждений я вам продемонстрирую на примере бесконечного множества натуральных чисел. Для начала нужно ответить на очень простой вопрос: сколько множеств натуральных чисел существует - одно или много? Правильного ответа на это вопрос не существует, поскольку числа придумали мы сами, в Природе чисел не существует. Да, Природа отлично умеет считать, но для этого она использует другие математические инструменты, не привычные для нас. Как Природа считает, я вам расскажу в другой раз. Поскольку числа придумали мы, то мы сами будем решать, сколько множеств натуральных чисел существует. Рассмотрим оба варианта, как и подобает настоящим ученым.

Вариант первый. "Пусть нам дано" одно-единственное множество натуральных чисел, которое безмятежно лежит на полочке. Берем с полочки это множество. Всё, других натуральных чисел на полочке не осталось и взять их негде. Мы не можем к этому множеству прибавить единицу, поскольку она у нас уже есть. А если очень хочется? Без проблем. Мы можем взять единицу из уже взятого нами множества и вернуть её на полочку. После этого мы можем взять с полочки единицу и прибавить её к тому, что у нас осталось. В результате мы снова получим бесконечное множество натуральных чисел. Записать все наши манипуляции можно так:

Я записал действия в алгебраической системе обозначений и в системе обозначений, принятой в теории множеств, с детальным перечислением элементов множества. Нижний индекс указывает на то, что множество натуральных чисел у нас одно и единственное. Получается, что множество натуральных чисел останется неизменным только в том случае, если из него вычесть единицу и прибавить эту же единицу.

Вариант второй. У нас на полочке лежит много разных бесконечных множеств натуральных чисел. Подчеркиваю - РАЗНЫХ, не смотря на то, что они практически не отличимы. Берем одно из этих множеств. Потом из другого множества натуральных чисел берем единицу и прибавляем к уже взятому нами множеству. Мы можем даже сложить два множества натуральных чисел. Вот что у нас получится:

Нижние индексы "один" и "два" указывают на то, что эти элементы принадлежали разным множествам. Да, если к бесконечному множеству прибавить единицу, в результате получится тоже бесконечное множество, но оно не будет таким же, как первоначальное множество. Если к одному бесконечному множеству прибавить другое бесконечное множество, в результате получится новое бесконечное множество, состоящее из элементов первых двух множеств.

Множество натуральных чисел используется для счета так же, как линейка для измерений. Теперь представьте, что к линейке вы добавили один сантиметр. Это уже будет другая линейка, не равная первоначальной.

Вы можете принимать или не принимать мои рассуждения - это ваше личное дело. Но если когда-то вы столкнетесь с математическими проблемами, задумайтесь, не идете ли вы по тропе ложных рассуждений, протоптанной поколениями математиков. Ведь занятия математикой, прежде всего, формируют у нас устойчивый стереотип мышления, а уже потом добавляют нам умственных способностей (или наоборот, лишают нас свободомыслия).

pozg.ru

воскресенье, 4 августа 2019 г.

Дописывал постскриптум к статье о и увидел в Википедии этот замечательный текст:

Читаем: "... богатая теоретическая основа математики Вавилона не имела целостного характера и сводилась к набору разрозненных приемов, лишенных общей системы и доказательной базы."

Вау! Какие мы умные и как хорошо можем видеть недостатки других. А слабо нам посмотреть на современную математику в таком же разрезе? Слегка перефразируя приведенный текст, лично у меня получилось следующее:

Богатая теоретическая основа современной математики не имеет целостного характера и сводится к набору разрозненных разделов, лишенных общей системы и доказательной базы.

За подтверждением своих слов я далеко ходить не буду - имеет язык и условные обозначения, отличные от языка и условных обозначений многих других разделов математики. Одни и те же названия в разных разделах математики могут иметь разный смысл. Наиболее очевидным ляпам современной математики я хочу посвятить целый цикл публикаций. До скорой встречи.

суббота, 3 августа 2019 г.

Как разделить множество на подмножества? Для этого необходимо ввести новую единицу измерения, присутствующую у части элементов выбранного множества. Рассмотрим пример.

Пусть у нас есть множество А , состоящее из четырех человек. Сформировано это множество по признаку "люди" Обозначим элементы этого множества через букву а , нижний индекс с цифрой будет указывать на порядковый номер каждого человека в этом множестве. Введем новую единицу измерения "половой признак" и обозначим её буквой b . Поскольку половые признаки присущи всем людям, умножаем каждый элемент множества А на половой признак b . Обратите внимание, что теперь наше множество "люди" превратилось в множество "люди с половыми признаками". После этого мы можем разделить половые признаки на мужские bm и женские bw половые признаки. Вот теперь мы можем применить математический фильтр: выбираем один из этих половых признаков, безразлично какой - мужской или женский. Если он присутствует у человека, тогда умножаем его на единицу, если такого признака нет - умножаем его на ноль. А дальше применяем обычную школьную математику. Смотрите, что получилось.

После умножения, сокращений и перегруппировок, мы получили два подмножества: подмножество мужчин Bm и подмножество женщин Bw . Приблизительно так же рассуждают математики, когда применяют теорию множеств на практике. Но в детали они нас не посвящают, а выдают готовый результат - "множество людей состоит из подмножества мужчин и подмножества женщин". Естественно, у вас может возникнуть вопрос, насколько правильно применена математика в изложенных выше преобразованиях? Смею вас заверить, по сути преобразований сделано всё правильно, достаточно знать математическое обоснование арифметики, булевой алгебры и других разделов математики. Что это такое? Как-нибудь в другой раз я вам об этом расскажу.

Что касается надмножеств, то объединить два множества в одно надмножество можно, подобрав единицу измерения, присутствующую у элементов этих двух множеств.

Как видите, единицы измерения и обычная математика превращают теорию множеств в пережиток прошлого. Признаком того, что с теорией множеств не всё в порядке, является то, что для теории множеств математики придумали собственный язык и собственные обозначения. Математики поступили так, как когда-то поступали шаманы. Только шаманы знают, как "правильно" применять их "знания". Этим "знаниям" они обучают нас.

В заключение, я хочу показать вам, как математики манипулируют с .

понедельник, 7 января 2019 г.

В пятом веке до нашей эры древнегреческий философ Зенон Элейский сформулировал свои знаменитые апории, самой известной из которых является апория "Ахиллес и черепаха". Вот как она звучит:

Допустим, Ахиллес бежит в десять раз быстрее, чем черепаха, и находится позади неё на расстоянии в тысячу шагов. За то время, за которое Ахиллес пробежит это расстояние, черепаха в ту же сторону проползёт сто шагов. Когда Ахиллес пробежит сто шагов, черепаха проползёт ещё десять шагов, и так далее. Процесс будет продолжаться до бесконечности, Ахиллес так никогда и не догонит черепаху.

Это рассуждение стало логическим шоком для всех последующих поколений. Аристотель, Диоген, Кант, Гегель, Гильберт... Все они так или иначе рассматривали апории Зенона. Шок оказался настолько сильным, что "... дискуссии продолжаются и в настоящее время, прийти к общему мнению о сущности парадоксов научному сообществу пока не удалось... к исследованию вопроса привлекались математический анализ, теория множеств, новые физические и философские подходы; ни один из них не стал общепризнанным решением вопроса... " [Википедия, " Апории Зенона "]. Все понимают, что их дурят, но никто не понимает, в чем заключается обман.

С точки зрения математики, Зенон в своей апории наглядно продемонстрировал переход от величины к . Этот переход подразумевает применение вместо постоянных. Насколько я понимаю, математический аппарат применения переменных единиц измерения либо ещё не разработан, либо его не применяли к апории Зенона. Применение же нашей обычной логики приводит нас в ловушку. Мы, по инерции мышления, применяем постоянные единицы измерения времени к обратной величине. С физической точки зрения это выглядит, как замедление времени до его полной остановки в момент, когда Ахиллес поравняется с черепахой. Если время останавливается, Ахиллес уже не может перегнать черепаху.

Если перевернуть привычную нам логику, всё становится на свои места. Ахиллес бежит с постоянной скоростью. Каждый последующий отрезок его пути в десять раз короче предыдущего. Соответственно, и время, затрачиваемое на его преодоление, в десять раз меньше предыдущего. Если применять понятие "бесконечность" в этой ситуации, то правильно будет говорить "Ахиллес бесконечно быстро догонит черепаху".

Как избежать этой логической ловушки? Оставаться в постоянных единицах измерения времени и не переходить к обратным величинам. На языке Зенона это выглядит так:

За то время, за которое Ахиллес пробежит тысячу шагов, черепаха в ту же сторону проползёт сто шагов. За следующий интервал времени, равный первому, Ахиллес пробежит ещё тысячу шагов, а черепаха проползет сто шагов. Теперь Ахиллес на восемьсот шагов опережает черепаху.

Этот подход адекватно описывает реальность без всяких логических парадоксов. Но это не полное решение проблемы. На Зеноновскую апорию "Ахиллес и черепаха" очень похоже утверждение Эйнштейна о непреодолимости скорости света. Эту проблему нам ещё предстоит изучить, переосмыслить и решить. И решение нужно искать не в бесконечно больших числах, а в единицах измерения.

Другая интересная апория Зенона повествует о летящей стреле:

Летящая стрела неподвижна, так как в каждый момент времени она покоится, а поскольку она покоится в каждый момент времени, то она покоится всегда.

В этой апории логический парадокс преодолевается очень просто - достаточно уточнить, что в каждый момент времени летящая стрела покоится в разных точках пространства, что, собственно, и является движением. Здесь нужно отметить другой момент. По одной фотографии автомобиля на дороге невозможно определить ни факт его движения, ни расстояние до него. Для определения факта движения автомобиля нужны две фотографии, сделанные из одной точки в разные моменты времени, но по ним нельзя определить расстояние. Для определения расстояния до автомобиля нужны две фотографии, сделанные из разных точек пространства в один момент времени, но по ним нельзя определить факт движения (естественно, ещё нужны дополнительные данные для расчетов, тригонометрия вам в помощь). На что я хочу обратить особое внимание, так это на то, что две точки во времени и две точки в пространстве - это разные вещи, которые не стоит путать, ведь они предоставляют разные возможности для исследования.
Покажу процесс на примере. Отбираем "красное твердое в пупырышку" - это наше "целое". При этом мы видим, что эти штучки есть с бантиком, а есть без бантика. После этого мы отбираем часть "целого" и формируем множество "с бантиком". Вот так шаманы добывают себе корм, привязывая свою теорию множеств к реальности.

А теперь сделаем маленькую пакость. Возьмем "твердое в пупырышку с бантиком" и объединим эти "целые" по цветовому признаку, отобрав красные элементы. Мы получили множество "красное". Теперь вопрос на засыпку: полученные множества "с бантиком" и "красное" - это одно и то же множество или два разных множества? Ответ знают только шаманы. Точнее, сами они ничего не знают, но как скажут, так и будет.

Этот простой пример показывает, что теория множеств совершенно бесполезна, когда речь заходит о реальности. В чем секрет? Мы сформировали множество "красное твердое в пупырышку с бантиком". Формирование происходило по четырем разным единицам измерения: цвет (красное), прочность (твердое), шероховатость (в пупырышку), украшения (с бантиком). Только совокупность единиц измерения позволяет адекватно описывать реальные объекты на языке математики . Вот как это выглядит.

Буква "а" с разными индексами обозначает разные единицы измерения. В скобках выделены единицы измерения, по которым выделяется "целое" на предварительном этапе. За скобки вынесена единица измерения, по которой формируется множество. Последняя строчка показывает окончательный результат - элемент множества. Как видите, если применять единицы измерения для формирования множества, тогда результат не зависит от порядка наших действий. А это уже математика, а не пляски шаманов с бубнами. Шаманы могут "интуитивно" придти к такому же результату, аргументируя его "очевидностью", ведь единицы измерения не входят в их "научный" арсенал.

При помощи единиц измерения очень легко разбить одно или объединить несколько множеств в одно надмножество. Давайте более внимательно рассмотрим алгебру этого процесса.

ВЫЧИТАНИЕ

Математика, 6 класс

(Н.Я.Виленкин)

учитель математики МОУ «Упшинская основная

общеобразовательная школа» Оршанского района Республики Марий Эл


Смысл вычитания

Задача. Пешеход за 2 часа прошел 9 км. Сколько километров он прошел за первый час, если его путь за второй час равен 4 км?

В этой задаче число 9 - сумма двух слагаемых, одно из которых равно 4 , а другое неизвестно.

Действие, с помощью которого по сумме и одному из слагаемых находят другое слагаемое, называют вычитанием.


Смысл вычитания

Так как 5 + 4 = 9,

то искомое слагаемое равно 5.

Пишут 9 – 4 = 5

9 – 4 = 5

разность

вычитаемое

уменьшаемое


Смысл вычитания

5 + 14 = 9

9 – 14 = ?

? + 14 = 9

9 – 14 = –5

9 – 14 = ?

23 + 14 = –9

? + 14 = –9

9 – 14 = 23


Смысл вычитания

Вычитание отрицательных чисел имеет тот же смысл: действие, с помощью которого по сумме и одному из слагаемых находят другое слагаемое, называют вычитанием.

9 – (–14) = ?

23 + (–14) = 9

? + (–14) = 9

9 – (–14) = 23

Подберите неизвестное слагаемое

9 – (–14) = ?

5 + (–14) = –9

? + (–14) = –9

9 – (–14) = 5


9 (–14) = 23

9 14 = –5

9 + (–14) = –5

9 + 14 = 23

9 (–14) = 5

9 14 = 23

9 + (–14) = 23

9 + 14 = 5

Подумайте, как вычитание заменить сложением.

ПРАВИЛО. Чтобы из данного числа вычесть другое, надо к уменьшаемому прибавить число, противоположное вычитаемому.


ВЫЧИТАНИЕ

а b = a + ( –b )

15 18 = 15 + ( –18 ) =

15 ( –18 ) = 15 + 18 =


ВЫЧИТАНИЕ

Замените вычитание сложением и найдите значение выражения:

12 20 =

3,4 10 =

10 ( –13 ) =

1,2 ( –1,3 ) =

17 ( –13 ) =

2,3 ( –3,5 ) =

21 13 =

5,1 4,9 =


ВЫЧИТАНИЕ

5 10 = 5 + ( 10 )

ПРАВИЛО. Любое выражение, содержащее лишь знаки сложения и вычитания, можно рассматривать как сумму

Назовите каждое слагаемое в сумме:

5 – 10 + 7 –15 –23 =

n + y – 9 + b – c – 1 =


ВЫЧИСЛИТЕ:

10 + 7 – 15 =

12 – 17 – 11 =

12 + 23 – 41 =

2 – 33 + 20 =

24 – 75 + 20 =


6 – 2 –5 ПРАВИЛО. Разность двух чисел положительна, если уменьшаемое больше вычитаемого. " width="640"

8 6 =

2

уменьшаемое

вычитаемое

разность

2 ( –5 ) =

3

уменьшаемое

разность

вычитаемое

Когда разность двух чисел положительна?

8 6

2 –5

ПРАВИЛО. Разность двух чисел положительна, если уменьшаемое больше вычитаемого .


10 15 =

5

уменьшаемое

вычитаемое

разность

8 ( –6 ) =

2

уменьшаемое

разность

вычитаемое

Сравните уменьшаемое и вычитаемое в примерах.

Когда разность двух чисел отрицательна?

10 15

8 –6

ПРАВИЛО. Разность двух чисел отрицательна, если уменьшаемое меньше вычитаемого .


Подумайте, когда разность двух чисел равна 0. Приведите примеры.

0

уменьшаемое

разность

вычитаемое

Определите знак разности, не производя вычислений:

12 ( –13 ) =

3,4 10 =

15 ( –11 ) =

2,3 ( –3,5 ) =

5,1 4,9 =

31 23 =


Нахождение длины отрезка

х

А (–3)

3 + х = 4

х = 4 – (–3) = 7

В (4)

АВ - ?

АВ = 7 ед.

ПРАВИЛО.


Нахождение длины отрезка

А (–1)

АВ = –1 – (–5) = 4 ед.

В (–5)

АВ - ?

АВ = 4 ед.

ПРАВИЛО. Чтобы найти длину отрезка на координатной прямой, надо из координаты его правого конца вычесть координату левого конца.


Вопросы для закрепления:

  • Что означает вычитание отрицательных чисел?
  • Как вычитание заменить сложением?
  • Когда разность двух чисел положительна?
  • Когда разность двух чисел отрицательна?
  • Когда разность двух чисел равна нулю?
  • Как найти длину отрезка на координатной прямой?

учитель начальных классов МАОУ лицей №21 , г. Иваново


НЕМНОГО ИСТОРИИ

Индийские математики пред-ставляли себе положительные числа как «имущества» , а отрицательные числа как «долги»

Правила сложения и вычитания, излагаемые Брахмагуптой:

  • «Сумма двух имуществ есть имущество».
  • «Сумма двух долгов есть долг»
  • «Сумма имущества и долга равна их разности»

Брахмагупта, индийский математик и астроном.