Курсовая работа: Фракталы. Фракталы вокруг нас Экономика и финансы

Хаос - это порядок, который нужно расшифровать.

Жозе Сарамаго, «Двойник»

«Грядущим поколениям ХХ век будет памятен лишь благодаря созданию теорий относительности, квантовой механики и хаоса... теория относительности разделалась с иллюзиями Ньютона об абсолютном пространстве-времени, квантовая механика развеяла мечту о детерминизме физических событий, и, наконец, хаос развенчал Лапласову фантазию о полной предопределенности развития систем» . Эти слова известного американского историка и популяризатора науки Джеймса Глейка отражают огромную важность вопроса, который лишь вкратце освещается в статье, предлагаемой вниманию читателя. Наш мир возник из хаоса. Однако если бы хаос не подчинялся своим собственным законам, если бы в нем не было особой логики, он ничего не смог бы породить.

Новое - это хорошо забытое старое

Позволю себе еще одну цитату из Глейка:

Мысль о внутреннем подобии, о том, что великое может быть вложено в малое, издавна ласкает человеческую душу... По представлениям Лейбница, капля воды содержит в себе весь блистающий разноцветьем мир, где искрятся водяные брызги и живут другие неизведанные вселенные. «Увидеть мир в песчинке» - призывал Блейк, и некоторые ученые пытались следовать его завету. Первые исследователи семенной жидкости склонны были видеть в каждом сперматозоиде своего рода гомункулуса, т. е. крошечного, но уже полностью сформировавшегося человечка.

Ретроспективу подобных воззрений можно обратить гораздо дальше в глубь истории. Один из основных принципов магии - неотъемлемой ступени развития любого общества - состоит в постулате: часть подобна целому. Он проявлялся в таких действиях, как захоронение черепа животного вместо всего животного, модели колесницы вместо самой колесницы и т. д. Сохраняя череп предка, родственники считали, что он продолжает жить рядом с ними и принимать участие в их делах.

Еще древнегреческий философ Анаксагор рассматривал первичные элементы мироздания как частицы, подобные другим частицам целого и самому целому, «бесконечные и по множеству, и по малости». Аристотель характеризовал элементы Анаксагора прилагательным «подобочастные» .

А наш современник, американский кибернетик Рон Эглэш, исследуя культуру африканских племен и южноамериканских индейцев, сделал открытие: с древних времен некоторые из них использовали фрактальные принципы построения в орнаментах, узорах, наносимых на одежду и предметы быта, в украшениях, ритуальных обрядах и даже в архитектуре. Так, структура деревень некоторых африканских племен представляет собой круг, в котором находятся маленькие круги - дома, внутри которых еще более мелкие круги - дома духов. У иных племен вместо кругов элементами архитектуры служат другие фигуры, но они также повторяются в разных масштабах, подчиненных единой структуре. Причем эти принципы построения не были простым подражанием природе, но согласовывались с бытующим мировоззрением и социальной организацией .

Наша цивилизация, казалось бы, ушла далеко от первобытного существования. Однако мы продолжаем жить в том же мире, нас по-прежнему окружает природа, живущая по своим законам, несмотря на все попытки человека приспособить ее к своим нуждам. Да и сам человек (не будем забывать об этом) остается частью этой природы.

Герт Эйленбергер, немецкий физик, занявшийся изучением нелинейности, как-то заметил:

Почему силуэт согнувшегося под напором штормового ветра обнаженного дерева на фоне мрачного зимнего неба воспринимается как прекрасный, а очертания современного многофункционального здания, несмотря на все усилия архитектора, вовсе не кажутся такими? Сдается мне, что... наше чувство прекрасного «подпитывается» гармоничным сочетанием упорядоченности и беспорядка, которое можно наблюдать в естественных явлениях: облаках, деревьях, горных цепях или кристаллах снежинок. Все такие контуры суть динамические процессы, застывшие в физических формах, и для них типична комбинация устойчивости и хаотичности.

У истоков теории хаоса

Что мы понимаем под хаосом ? Невозможность предсказать поведение системы, беспорядочные скачки в разных направлениях, которые никогда не превратятся в упорядоченную последовательность.

Первым исследователем хаоса считается французский математик, физик и философ Анри Пуанкаре. Еще в конце XIX в. при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются от конкретной точки, и не приближаются к ней.

Традиционные методы геометрии, широко используемые в естественных науках, основаны на аппроксимации структуры исследуемого объекта геометрическими фигурами, например линиями, плоскостями, сферами, метрическая и топологическая размерности которых равны между собой. В большинстве случаев свойства исследуемого объекта и его взаимодействие с окружающей средой описываются интегральными термодинамическими характеристиками, что приводит к утрате значительной части информации о системе и к замене ее на более или менее адекватную модель. Чаще всего подобное упрощение вполне оправдано, однако известны многочисленные ситуации, когда применение топологически неадекватных моделей недопустимо. Пример такого несоответствия привел в своей кандидатской диссертации (теперь уже доктор химических наук) Владимир Константинович Иванов: оно обнаруживается при измерении площади развитой (например, пористой) поверхности твердых тел с помощью сорбционных методов, регистрирующих изотермы адсорбции. Оказалось, что величина площади зависит от линейного размера молекул-«измерителей» не квадратично, чего следовало бы ожидать из простейших геометрических соображений, а с показателем степени, иногда вплотную приближающемся к трем .

Прогнозирование погоды - одна из проблем, над которой человечество бьется с древних времен. Существует известный анекдот на эту тему, где прогноз погоды передается по цепочке от шамана - оленеводу, затем геологу, потом редактору радиопередачи, и наконец круг замыкается, поскольку выясняется, что шаман узнал прогноз по радио. Описание такой сложной системы, как погода, со множеством переменных, невозможно свести к простым моделям. С данной задачи началось использование компьютеров для моделирования нелинейных динамических систем. Один из основоположников теории хаоса, американский метеоролог и математик Эдвард Нортон Лоренц много лет отдал проблеме прогнозирования погоды. Еще в 60-х годах прошлого века, пытаясь понять причины ненадежности прогнозов погоды, он показал, что состояние сложной динамической системы может сильно зависеть от начальных условий: незначительное изменение одного из многих параметров способно кардинально изменить ожидаемый результат. Лоренц назвал эту зависимость эффектом бабочки: «Сегодняшнее трепетание крыльев мотылька в Пекине через месяц может вызвать ураган в Нью-Йорке» . Ему принесла известность работа, посвященная общему круговороту атмосферы. Исследуя описывающую процесс систему уравнений с тремя переменными, Лоренц графически отобразил результаты своего анализа: линии графика представляют собой координаты точек, определяемых решениями в пространстве этих переменных (рис. 1). Полученная двойная спираль, названная аттрактор Лоренца (или «странный аттрактор»), выглядела как нечто бесконечно запутанное, но всегда расположенное в определенных границах и никогда не повторяющееся. Движение в аттракторе абстрактно (переменными могут быть скорость, плотность, температура и др.), и тем не менее оно передает особенности реальных физических явлений, таких как движение водяного колеса, конвекция в замкнутой петле, излучение одномодового лазера, диссипативные гармонические колебания (параметры которых играют роль соответствующих переменных).

Из тысяч публикаций, составивших специальную литературу по проблеме хаоса, вряд ли какая-либо цитировалась чаще, чем написанная Лоренцем в 1963 г. статья «Детерминистский непериодический поток» . Хотя благодаря компьютерному моделированию уже во времена этой работы предсказание погоды из «искусства превратилось в науку», долгосрочные прогнозы по-прежнему оставались недостоверными и ненадежными. Причина этого заключалась в том самом эффекте бабочки.

В тех же 60-х годах математик Стивен Смэйл из Калифорнийского университета собрал в Беркли исследовательскую группу из молодых единомышленников. Ранее он был удостоен медали Филдса за выдающиеся исследования в области топологии. Смэйл занимался изучением динамических систем, в частности нелинейных хаотических осцилляторов. Для воспроизведения всей неупорядоченности осциллятора ван дер Поля в фазовом пространстве он создал структуру, известную под названием «подкова» - пример динамической системы, имеющей хаотическую динамику.

«Подкова» (рис. 2) - точный и зримый образ сильной зависимости от начальных условий: никогда не угадаешь, где окажется начальная точка после нескольких итераций. Этот пример послужил толчком к изобретению русским математиком, специалистом по теории динамических систем и дифференциальных уравнений, дифференциальной геометрии и топологии Дмитрием Викторовичем Аносовым «диффеоморфизмов Аносова» . Позже из этих двух работ выросла теория гиперболических динамических систем. Прошло десятилетие, прежде чем результаты работы Смэйла удостоились внимания представителей других дисциплин. «Когда это все же случилось, физики поняли, что Смэйл повернул целый раздел математики лицом к реальному миру» .

В 1972 г. математик из Мэрилендского университета Джеймс Йорк прочитал вышеупомянутую статью Лоренца, которая поразила его. Йорк увидел в статье живую физическую модель и посчитал своей святой обязанностью донести до физиков то, чего они не разглядели в работах Лоренца и Смэйла. Он направил копию статьи Лоренца Смэйлу. Тот изумился, обнаружив, что безвестный метеоролог (Лоренц) десятью годами раньше обнаружил ту неупорядоченность, которую он сам посчитал однажды математически невероятной, и разослал копии всем своим коллегам.

Биолог Роберт Мэй, друг Йорка, занимался изучением изменений численности популяций животных. Мэй шел по стопам Пьера Ферхлюста, который еще в 1845 г. обратил внимание на непредсказуемость изменения численности животных и пришел к выводу, что коэффициент прироста популяции - величина непостоянная. Иными словами, процесс оказывается нелинейным. Мэй пытался уловить, что случается с популяцией в момент приближения колебаний коэффициента роста к некоторой критической точке (точке бифуркации). Варьируя значения этого нелинейного параметра, он обнаружил, что возможны коренные перемены в самой сущности системы: увеличение параметра означало возрастание степени нелинейности, что, в свою очередь, изменяло не только количественные, но и качественные характеристики результата. Подобная операция влияла как на конечное значение численности популяции, находившейся в равновесии, так и на ее способность вообще достигнуть последнего. При определенных условиях периодичность уступала место хаосу, колебаниям, которые никогда не затухали.

Йорк математически проанализировал описанные явления в своей работе, доказав, что в любой одномерной системе происходит следующее: если появляется регулярный цикл с тремя волнами (плавными подъемами и спадами значений какого-либо параметра), то в дальнейшем система начнет демонстрировать как правильные циклы любой другой продолжительности, так и полностью хаотичные. (Как выяснилось через несколько лет после опубликования статьи на международной конференции в восточном Берлине, советский (украинский) математик Александр Николаевич Шарковский несколько опередил Йорка в своих исследованиях ). Йорк написал статью для известного научного издания «Американский математический ежемесячник» . Однако Йорк достиг большего, чем просто математический результат: он продемонстрировал физикам, что хаос вездесущ, стабилен и структурирован. Он дал повод поверить в то, что сложные системы, традиционно описывающиеся трудными для решения дифференциальными уравнениями, могут быть представлены с помощью наглядных графиков.

Мэй пытался привлечь внимание биологов к тому, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу возникает целый каскад удвоения периодов. Именно в точках бифуркации некоторое увеличение плодовитости особей могло привести, например, к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Американец Митчел Фейгенбаум решил начать с подсчета точных значений параметра, порождавших такие изменения. Его расчеты показывали, что не имело значения, какова начальная популяция, - она все равно неуклонно приближалась к аттрактору. Затем, с первым удвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Потом происходило следующее умножение периодов, и каждая точка аттрактора вновь начинала делиться. Число - инвариант, полученный Фейгенбаумом, - позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать этот эффект для сложнейшего аттрактора - в двух, четырех, восьми точках... Говоря языком экологии, он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Так Фейгенбаум открыл в 1976 г. «каскад удвоения периода», опираясь на работу Мэя и свои исследования турбулентности. Его теория отражала естественный закон, который относится ко всем системам, испытывающим переход от упорядоченного состояния к хаосу. Йорк, Мэй и Файгенбаум первыми на Западе в полной мере осознали важность удвоения периодов и сумели передать эту идею всему научному сообществу. Мэй заявлял, что хаос необходимо преподавать.

Советские математики и физики продвигались в своих исследованиях независимо от зарубежных коллег. Начало изучению хаоса положили работы А. Н. Колмогорова 50-х годов. Но и идеи зарубежных коллег не оставались без их внимания. Пионерами теории хаоса считаются советские математики Андрей Николаевич Колмогоров и Владимир Игоревич Арнольд и немецкий математик Юрген Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Другой наш выдающийся соотечественник, блестящий физик и математик Яков Григорьевич Синай, применил в термодинамике соображения, аналогичные «подкове Смейла». Едва в 70-х годах с работой Лоренца познакомились западные физики, как она приобрела известность и в СССР. В 1975 г., когда Йорк и Мэй еще прилагали немалые усилия к тому, чтобы добиться внимания коллег, Синай и его товарищи организовали в Горьком исследовательскую группу для изучения этой проблемы.

В прошлом веке, когда узкая специализация и разобщение между различными дисциплинами стали в науке нормой, математики, физики, биологи, химики, физиологи, экономисты бились над схожими задачами, не слыша друг друга. Идеи, требующие изменения привычного мировоззрения, всегда с трудом пробивают себе путь. Однако постепенно стало ясно, что такие вещи, как изменение популяций животных, колебания цен на рынке, перемена погоды, распределение небесных тел по размерам и многое, многое другое, - подчиняются одним закономерностям. «Осознание этого факта заставило менеджеров пересмотреть отношение к страховке, астрономов - под другим углом зрения взглянуть на Солнечную систему, политиков - изменить мнение о причинах вооруженных конфликтов» .

К середине 80-х годов ситуация сильно изменилась. Идеи фрактальной геометрии объединили ученых, озадаченных собственными наблюдениями и не знавшими, как их интерпретировать. Для исследователей хаоса математика стала экспериментальной наукой, компьютеры заменили собой лаборатории. Графические изображения приобрели первостепенную важность. Новая наука дала миру особый язык, новые понятия: фазовый портрет, аттрактор, бифуркация, сечение фазового пространства, фрактал...

Бенуа Мандельброт, опираясь на идеи и работы предшественников и современников, показал, что такими сложными процессами, как рост дерева, образование облаков, вариации экономических характеристик или численности популяций животных управляют сходные, по сути, законы природы. Это определенные закономерности, по которым живет хаос. С точки зрения природной самоорганизации они намного проще, чем искусственные формы, привычные цивилизованному человеку. Сложными их можно признать лишь в контексте евклидовой геометрии, поскольку фракталы определяются посредством задания алгоритма, и, следовательно, могут быть описаны с помощью небольшого объема информации.

Фрактальная геометрия природы

Давайте попробуем разобраться, что же такое фрактал и «с чем его едят». А съесть некоторые из них действительно можно, как, например, типичного представителя, показанного на фотографии.

Слово фрактал происходит от латинского fractus - дробленый, сломанный, разбитый на куски. Под фракталом подразумевается математическое множество, обладающее свойством самоподобия, т. е. масштабной инвариантности.

Термин «фрактал» был придуман Мандельбротом в 1975 г. и получил широкую популярность с выходом в 1977 г. его книги «Фрактальная геометрия природы» . «Дайте чудовищу какое-нибудь уютное, домашнее имя, и вы удивитесь, насколько легче будет его приручить!» - говорил Мандельброт. Это стремление сделать исследуемые объекты (математические множества) близкими и понятными привело к рождению новых математических терминов, таких как пыль , творог , сыворотка , наглядно демонстрирующих их глубинную связь с природными процессами.

Математическое понятие фрактала выделяет объекты, обладающие структурами различных масштабов, как больших, так и малых, и, таким образом, отражает иерархический принцип организации. Конечно, различные ветви дерева, например, не могут быть точно совмещены друг с другом, но их можно считать подобными в статистическом смысле. Точно так же формы облаков, очертания гор, линия морского берега, рисунок пламени, сосудистая система, овраги, молния, рассматриваемые при различных масштабах, выглядят подобными. Хотя эта идеализация и может оказаться упрощением действительности, она существенно увеличивает глубину математического описания природы.

Понятие «природный фрактал» Мандельброт ввел для обозначения естественных структур, которые могут быть описаны с помощью фрактальных множеств. Эти природные объекты включают в себя элемент случайности. Созданная Мандельбротом теория позволяет количественно и качественно описывать все те формы, которые ранее назывались спутанными, волнистыми, шероховатыми и т. д.

Динамические процессы, о которых шла речь выше, так называемые процессы с обратной связью, возникают в различных физических и математических задачах. Все они имеют одно общее - конкуренцию нескольких центров (получивших имя «аттракторы») за доминирование на плоскости. То состояние, в котором система оказалась после некоторого числа итераций, зависит от ее «места старта». Поэтому каждому аттрактору соответствует некоторая область начальных состояний, из которых система обязательно попадет в рассматриваемое конечное состояние. Таким образом, фазовое пространство системы (абстрактное пространство параметров, ассоциированных с конкретной динамической системой, точки в котором однозначно характеризуют все возможные ее состояния) разбивается на области притяжения аттракторов. Налицо своеобразный возврат к динамике Аристотеля, согласно которой каждое тело стремится к предназначенному ему месту . Простые границы между «сопредельными территориями» в результате такого соперничества возникают редко. Именно в этой пограничной области и происходит переход от одной формы существования к другой: от порядка к хаосу. Общий вид выражения для динамического закона очень прост: х n+1 → f х n C . Вся сложность состоит в нелинейной зависимости между начальным значением и результатом. Если начать итерационный процесс указанного вида с некоторого произвольного значения \(x_0 \), то результатом его будет последовательность \(x_1 \), \(x_2 \), ..., которая либо будет сходиться к некоторому предельному значению \(X \), стремясь к состоянию покоя, либо придет к некоторому циклу значений, которые будут повторяться вновь и вновь, либо будет все время вести себя беспорядочно и непредсказуемо . Именно такие процессы исследовали еще во время Первой мировой войны французские математики Гастон Жюлиа и Пьер Фато.

Изучая множества, открытые ими, Мандельброт в 1979 г. пришел к изображению на комплексной плоскости образа, который является, как будет ясно из дальнейшего, своего рода оглавлением целого класса форм, именующегося множествами Жюлиа. Множество Жюлиа - это множество точек, возникающее в результате итерирования квадратичного преобразования: х n → х n−1 2 + C , динамика в окрестности которых неустойчива по отношению к малым возмущениям начального положения. Каждое последовательное значение \(x \) получается из предыдущего; комплексное число \(C \) называется управляющим параметром . Поведение последовательности чисел зависит от параметра \(C \) и начальной точки \(x_0 \). Если зафиксировать \(C \) и изменять \(x_0 \) в поле комплексных чисел, мы получим множество Жюлиа. Если же зафиксировать \(x_0 \) = 0 и изменять \(C \), получим множество Мандельброта (\(M \)). Оно подсказывает нам, какого вида множества Жюлиа следует ожидать при конкретном выборе \(C \). Каждое комплексное число \(C \) либо принадлежит области \(M \) (черной на рис. 3), либо нет. \(C \) принадлежит \(M \) тогда и только тогда, когда «критическая точка» \(x_0 \) = 0 не стремится к бесконечности. Множество \(M \) состоит из всех точек \(C \), которые ассоциируются со связными множествами Жюлиа, если же точка \(C \) лежит вне множества \(M \), ассоциированное с ней множество Жюлиа несвязно. Граница множества \(M \) определяет момент математического фазового перехода для множеств Жюлиа х n → х n−1 2 + C . Когда параметр \(C \) покидает \(M \), множества Жюлиа теряют свою связность, образно говоря, взрываются и превращаются в пыль. Качественный скачок, происходящий на границе \(M \), влияет и на примыкающую к границе область. Сложную динамическую структуру пограничной области можно приближенно показать, окрашивая (условно) в разные цвета зоны с одинаковым временем «убегания в бесконечность начальной точки \(x_0 \) = 0». Те значения \(C \) (один оттенок), при которых критической точке требуется данное число итераций, чтобы оказаться вне круга радиусом \(N \), заполняют промежуток между двумя линиями. По мере приближения к границе \(M \) необходимое число итераций увеличивается. Точка все большее время вынуждена блуждать извилистыми путями вблизи множества Жюлиа. Множество Мандельброта воплощает в себе процесс перехода от порядка к хаосу.

Интересно проследить путь, которым Мандельброт шел к своим открытиям. Бенуа родился в Варшаве в 1924 г., в 1936 семья эмигрировала в Париж. Окончив Политехническую школу, а затем и университет в Париже, Мандельброт переехал в США, где отучился еще и в Калифорнийском технологическом институте. В 1958 г. он устроился в научно-исследовательский центр IBM в Йорктауне. Несмотря на чисто прикладную деятельность компании, занимаемая должность позволяла ему вести исследования в самых разных областях. Работая в области экономики, молодой специалист занялся изучением статистики цен на хлопок за большой период времени (более 100 лет). Анализируя симметрию длительных и кратковременных колебаний цен, он заметил, что эти колебания в течение дня казались случайными и непредсказуемыми, однако последовательность таких изменений не зависела от масштаба. Для решения этой задачи он впервые использовал свои разработки будущей фрактальной теории и графическое отображение исследуемых процессов.

Интересуясь самыми разными областями науки, Мандельброт обратился к математической лингвистике, затем наступил черед теории игр. Он также предложил собственный подход к экономике, указав на упорядоченность масштабов в распространении малых и больших городов. Изучая малоизвестную работу английского ученого Льюиса Ричардсона, вышедшую после смерти автора, Мандельброт столкнулся с феноменом береговой линии. В статье «Какова длина береговой линии Великобритании?» он подробно исследует этот вопрос, над которым мало кто задумывался до него, и приходит к неожиданным выводам: длина береговой линии равна... бесконечности! Чем точнее вы стараетесь ее измерить, тем большим получается ее значение!

Для описания подобных явлений Мандельброту пришло в голову отталкиваться от идеи размерности. Фрактальная размерность объекта служит количественной характеристикой одной из его особенностей, а именно - заполнения им пространства.

Определение понятия фрактальной размерности восходит к работе Феликса Хаусдорфа, опубликованной в 1919 г., и было окончательно сформулировано Абрамом Самойловичем Безиковичем. Фрактальная размерность - мера детализации, изломанности, неровности фрактального объекта. В евклидовом пространстве топологическая размерность всегда определяется целым числом (размерность точки - 0, линии - 1, плоскости - 2, объемного тела - 3). Если проследить, например, проекцию на плоскость движения броуновской частицы, которая вроде бы должна состоять из отрезков прямой, т. е. иметь размерность 1, очень скоро окажется, что след ее заполняет почти всю плоскость. Но размерность плоскости - 2. Расхождение между этими величинами и дает нам право отнести данную «кривую» к фракталам, а ее промежуточную (дробную) размерность называть фрактальной. Если рассмотреть хаотическое движение частицы в объеме, фрактальная размерность траектории окажется больше 2, но меньше 3. Артерии человека, например, имеют фрактальную размерность примерно 2,7. Упомянутые в начале статьи результаты Иванова, относящиеся к измерению площади пор силикагеля, которые не могут быть истолкованы в рамках обычных евклидовых представлений, при использовании теории фракталов находят разумное объяснение .

Итак, с математической точки зрения, фракталом называется множество, для которого размерность Хаусдорфа - Безиковича строго больше его топологической размерности и может быть (а чаще всего и является) дробной.

Необходимо особо подчеркнуть, что фрактальная размерность объекта не описывает его форму, и объекты, имеющие одинаковую размерность, но порожденные различными механизмами образования, зачастую совершенно не похожи друг на друга. Физические фракталы обладают скорее статистическим самоподобием.

Дробное измерение позволяет вычислять характеристики, которые не могут быть четко определены иным путем: степени неровности, прерывистости, шероховатости или неустойчивости какого-либо объекта. Например, извилистая береговая линия, несмотря на неизмеримость ее длины, обладает присущей только ей шероховатостью. Мандельброт указал пути расчета дробных измерений объектов окружающей действительности. Создавая свою геометрию, он выдвинул закон о неупорядоченных формах, которые встречаются в природе. Закон гласил: степень нестабильности постоянна при различных масштабах.

Особую разновидность фракталов составляют временные фракталы . В 1962 г. Мандельброт столкнулся с задачей по устранению шумов в телефонных линиях, которые вызвали проблемы для компьютерных модемов. Качество передачи сигнала зависит от вероятности возникновения ошибок. Инженеры бились над проблемой уменьшения шумов, придумывая головоломные и дорогостоящие приемы, но не получали впечатляющих результатов. Опираясь на работу основателя теории множеств Георга Кантора, Мандельброт показал, что возникновения шумов - порождения хаоса - невозможно избежать в принципе, поэтому предложенные способы борьбы с ними не принесут результата. В поисках закономерности возникновения шумов он получает «канторову пыль» - фрактальную последовательность событий. Интересно, что тем же закономерностям подчиняется распределение звезд в Галактике:

«Вещество», однородно распределенное вдоль инициатора (единичный отрезок временной оси), подвергается воздействию центробежного вихря, который «сметает» его к крайним третям интервала... Створаживанием можно называть любой каскад неустойчивых состояний, приводящий в итоге к сгущению вещества, а термин творог может определять объем, внутри которого некая физическая характеристика становится - в результате створаживания - чрезвычайно концентрированной.

Хаотические явления, такие как турбулентность атмосферы, подвижность земной коры и т. д., демонстрируют сходное поведение в различных временных масштабах подобно тому, как объекты, обладающие инвариантностью к масштабу, обнаруживают сходные структурные закономерности в различных пространственных масштабах.

В качестве примера приведем несколько характерных ситуаций, где полезно использовать представления о фрактальной структуре. Профессор Колумбийского университета Кристофер Шольц специализировался на изучении формы и строения твердого вещества Земли, он изучал землетрясения. В 1978 г. он прочитал книгу Мандельброта «Фракталы: форма, случайность и размерность» и попытался применить теорию к описанию, классификации и измерению геофизических объектов. Шольц выяснил, что фрактальная геометрия снабдила науку эффективным методом описания специфичного бугристого ландшафта Земли. Фрактальное измерение ландшафтов планеты открывает двери к постижению ее важнейших характеристик. Металлурги обнаружили то же самое на другом масштабном уровне - применительно к поверхностям различных типов стали. В частности, фрактальное измерение поверхности металла зачастую позволяет судить о его прочности. Огромное количество фрактальных объектов продуцирует явление кристаллизации. Самый распространенный тип фракталов, возникающих при росте кристаллов, - дендриты, они чрезвычайно широко распространены в живой природе. Ансамбли наночастиц часто демонстрируют реализацию «пыли Леви». Эти ансамбли в сочетании с абсорбированным растворителем образуют прозрачные компакты - стекла Леви, потенциально важные материалы фотоники .

Поскольку фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур, понятно, что такая область математики стала развиваться семимильными шагами вместе с появлением и развитием мощных компьютеров. Хаос, в свою очередь, вызвал к жизни новые компьютерные технологии, специальную графическую технику, которая способна воспроизводить удивительные структуры невероятной сложности, порождаемые теми или иными видами беспорядка. В век Интернета и персональных компьютеров то, что представляло значительную сложность во времена Мандельброта, стало легко доступным любому желающему. Но самым важным в его теории стало, разумеется, не создание красивых картинок, а вывод, что данный математический аппарат пригоден для описания сложных природных явлений и процессов, которые раньше не рассматривались в науке вообще. Репертуар алгоритмических элементов неисчерпаем.

Овладев языком фракталов, можно описать форму облака так же четко и просто, как архитектор описывает здание с помощью чертежей, в которых применяется язык традиционной геометрии. <...> Прошло всего несколько десятилетий с тех пор, как Бенуа Мандельброт заявил: «Геометрия природы фрактальна!», на сегодняшний день мы уже можем предположить намного больше, а именно что фрактальность - это первоочередной принцип построения всех без исключения природных объектов.

В заключение позвольте представить вашему вниманию набор фотографий, иллюстрирующих этот вывод, и фракталов, построенных с помощью компьютерной программы Fractal Explorer . А проблеме использования фракталов в физике кристаллов будет посвящена наша следующая статья.

Post Scriptum

С 1994 по 2013 г. в пяти томах вышел уникальный труд отечественных ученых «Атлас временных вариаций природных антропогенных и социальных процессов» - не имеющий аналогов источник материалов, который включает в себя данные мониторинга космоса, биосферы, литосферы, атмосферы, гидросферы, социальной и техногенной сфер и сферы, связанной со здоровьем и качеством жизни человека. В тексте подробно приводятся данные и результаты их обработки, сопоставляются особенности динамики временных рядов и их фрагментов. Унифицированное представление результатов дает возможность получить сопоставимые результаты для выявления общих и индивидуальных черт динамики процессов и причинно-следственных связей между ними. На экспериментальном материале показано, что процессы в разных сферах, во-первых, схожи, а во-вторых, в большей или меньшей степени связаны друг с другом.

Итак, атлас обобщил результаты междисциплинарных исследований и представил сравнительный анализ совершенно различных данных в широчайшем диапазоне времени и пространства. Книга показывает, что «протекающие в земных сферах процессы обусловлены большим числом взаимодействующих факторов, которые в разных областях (и в разное время) вызывают разную реакцию», что говорит о «необходимости комплексного подхода к анализу геодинамических, космических, социальных, экономических и медицинских наблюдений». Остается выразить надежду на то, что эти фундаментальные по значимости работы будут продолжены.

. Юргенс Х., Пайтген Х.-О., Заупе Д. Язык фракталов // В мире науки. 1990. № 10. С. 36–44.
. Атлас временных вариаций природных антропогенных и социальных процессов. Т. 1: Порядок и хаос в литосфере и других сферах. М., 1994; Т. 2: Циклическая динамика в природе и обществе. М., 1998; Т. 3: Природные и социальные сферы как части окружающей среды и как объекты воздействий. М., 2002; Т. 4: Человек и три окружающие его среды. М., 2009. Т. 5: Человек и три окружающие его среды. М., 2013.

ИССЛЕДОВАНИЕ МИРА ФРАКТАЛОВ

Васильева Марина Владимировна

студент 3 курса, факультет информатики СГАУ им. академика С.П. Королева, РФ, г. Самара

Тишин Владимир Викторович

научный руководитель, доцент, кафедра прикладной математики СГАУ

им. академика С.П. Королева, РФ, г. Самара

Введение

Мир фракталов - это удивительный, огромный и многообразный мир. Он очаровывает, покоряет, однако иногда в нем трудно разобраться. Фрактальные рисунки - это пик вдохновения мастера на пути к совершенному единству математики, информатики и искусства. Недавно геометрические модели природных объектов изображались с помощью комбинаций простых фигур, таких как прямые, треугольники, окружности, сферы, многогранники. Но с помощью набора этих известных фигур нелегко описать более сложные природные объекты, например, пористые материалы, формы облаков, кроны деревьев. Новые компьютерные средства, без которых не может обойтись современная наука, выводят математику на чрезвычайно высокий уровень. Когда изучаешь фракталы, понимаешь, что весьма затруднительно провести грань между математикой и информатикой, потому что они тесно переплелись, стремясь открыть неповторимые, уникальные модели. Фракталы приближают нас к пониманию некоторых природных процессов и явлений. Поэтому тема фракталов меня заинтересовала.

Передо мной возникла проблема: как построить фрактал, используя математические формулы.

Гипотеза: если изучить закономерности построения фракталов, то их можно смоделировать.

Методы исследования: анализ, синтез, моделирование.

Цель: построить фракталы с помощью компьютерных технологий.

Задачи: исследовать фракталы; изучить историю возникновения и применения фракталов.

Актуальность: я считаю - за фракталами будущее, они лучше передают наш изменчивый и сложный мир. Фракталы помогают изучить различные процессы и явления.

Результат исследования: разработка алгоритма построения фракталов.

Теоретическая и практическая значимость: использование алгоритма построения фракталов для изучения их свойств.

Понятие «фрактал»

Понятия «фрактал» и «фрактальная геометрия» появились в 70-80-х годах XX века. Они устойчиво закрепились в употреблении математиков и программистов. Слово «фрактал», что в переводе с латинского означает разбитый, поделённый на части, было предложено Бенуа Мандельбротом, американским математиком, в 1975 году, с целью обозначения нерегулярных самоподобных структур. Мандельброт дал такое определение: «фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Следует отметить, что свойство самоподобности отражает главную особенность природных объектов.

С точки зрения математики, фрактал - это, в первую очередь, множество дробной размерности. Известно, что размерность отрезка равна 1, квадрата - 2, куба и параллелепипеда - 3. Дробная размерность - это основное свойство фракталов.

С выходом книги Мандельброта «Фрактальная геометрия природы» в 1977 году связывают рождение фрактальной геометрии. В ней применены научные результаты учёных, среди них Пуанкаре, Фату, Жюлиа, Кантор, Хаусдорф, работавших в период 1875-1925 гг. в той же области. И только в наше время удалось объединить в единую систему эти работы.

Фрактальная геометрия является революцией в математике и математическом описании природы. Сам Бенуа Мандельброт, первооткрыватель фрактальной геометрии, пишет об этом так: «Облака - это не сферы, горы - это не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах бесконечно».

Рассматривая фрактальные объекты в различном масштабе, можно легко обнаружить одни и те же основные элементы. Закономерности, которые повторяются, определяют дробную размерность необычной геометрической фигуры.

Классификация фракталов

Удобно прибегнуть к их общепринятой классификации, чтобы представить все многообразие фракталов. Фракталы делятся на геометрические, алгебраические и стохастические.

К геометрическим фракталам относятся: кривая Коха, кривая дракона, кривая Леви, кривая Минковского, треугольник Серпинского, ковер Серпинского, множество Кантора и дерево Пифагора.

Такого класса фракталы самые наглядные, так как в них сразу видна самоподобность. В двухмерном случае их можно получить с помощью ломаной, которая называется генератором, в трехмерном случае - поверхности. Каждый из отрезков, составляющих ломаную, за один шаг алгоритма, заменяется на ломаную-генератор, в соответствующем масштабе. Таким образом, получается фрактальная кривая в результате бесконечного повторения этой процедуры. При видимой сложности полученной кривой, её общий вид задается только формой генератора.

Алгебраические фракталы: множество Мандельброта, множество Жюлиа, бассейны Ньютона, биоморфы.

Алгебраические фракталы являются самыми многочисленными. Для построения алгебраических фракталов используются итерации нелинейных отображений, которые задаются простыми алгебраическими формулами. Двухмерные процессы считаются наиболее изученными. Следует отметить, что нелинейные динамические системы имеют несколько устойчивых состояний. От начального состояния зависит то состояние, в котором оказалась динамическая система после некоторого числа итераций. Возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры стала для математиков неожиданностью.

К стохастическим фракталам относятся плазма и рандомизированный фрактал.

Термин «стохастичность» происходит от греческого слова и обозначает «предположение».

Как бы ни была похожа на границу берега, кривая Коха не может быть в качестве её модели, потому что она всюду одинакова, самоподобна и, можно сказать, слишком «правильна». Все природные объекты создаются по капризу природы, в этом процессе всегда есть случайность. Стохастическими фракталами называются такие фракталы, при построении которых случайным образом в итеративной системе изменяются какие-либо параметры. При этом получаются очень похожие на природные объекты такие, как несимметричные деревья, изрезанные береговые линии. При моделировании рельефа местности и поверхности моря используются двумерные стохастические фракталы.

Применение фракталов

Главным применением фракталов является современная компьютерная графика. С их помощью можно создавать плоские множества и поверхности очень сложной формы, изменяя при этом параметры в заданных уравнениях.

Фрактальная геометрия является незаменимой при генерации искусственных облаков, горных ландшафтов, морей. Учёные нашли простой способ изображения сложных объектов, у которых образы напоминают природные формы.

Наиболее полезным использованием фракталов в компьютерной науке считается фрактальное сжатие данных. Основой такого вида сжатия служит то, что фрактальной геометрией достаточно хорошо описывается реальный мир. Картинки при этом сжимаются даже намного лучше, чем с помощью обычных методов. При увеличении картинки не наблюдается эффекта пикселизации, в этом заключается еще одно преимущество фрактального сжатия. При фрактальном сжатии после увеличения картинка часто выглядит даже лучше, чем до него.

Следует отметить, что фракталы применяются в шифрование данных с помощью фрактальных алгоритмов.

Для передачи данных на расстояние используются антенны, которые имеют фрактальные формы, что сильно уменьшает их вес и размеры.

Также с помощью фракталов можно моделировать сложные физические процессы, например, языки пламени. Фрактальные формы достаточно хорошо передают пористые материалы, имеющие очень сложную геометрическую структуру. Такие знания используются в науке о нефти.

Теория фракталов применяется и при изучении структуры Вселенной.

В биологии можно рассмотреть такие примеры, как биосенсорные взаимодействия и биения сердца, моделирование хаотических процессов. Фракталы используют в своих произведениях и художники, и дизайнера, и композиторы.

Алгоритмы построения фракталов

Рассмотрим множество Мандельброта. В математике множество Мандельброта - это фрактал, который определяется как множество точек на комплексной плоскости, итеративная последовательность не уходит в бесконечность и задана формулами z 0 =0, Z n +1 =Z n 2 +M. Чтобы построить данную последовательность точек, т. е. фрактал, перейдем от комплексной формы записи с помощью преобразований к удобным формулам для построения.

Если выражение Z n +1 =Z n 2 +M переформулировать в виде итеративной последовательности значений координат комплексной плоскости x и y, то есть, приняв Z = X + iY и М = p + iq (где i - мнимая единица), то получим алгоритм с формулами (1): X n +1 =X n 2 –Y n 2 +p; Y n +1 =2X n Y n +q, с параметрами p = – 0,5219;

Сначала полагаем X n = 0; Y n = 0, и по формулам (1) получаем на первом шаге вычислений: X n +1 =0 2 –0 2 –0,5219= – 0,5219; Y n +1 =2·0·0+0,4999.

Теперь полагаем X n = X n +1 = – 0,5219; Y n = Y n +1 = 0,4999, и по формулам (1) получаем на втором шаге: X n +1 = (–0,5219) 2 – (0,4999) 2 – 0,5219 = – 0,4994...;

Y n +1 = 2·(–0,5219)·(0,4999) + 0,4999 = – 0,0218....

Затем полагаем X n = X n +1 = – 0,4994...; Y n = Y n +1 = –0,0218, и опять по формулам (1) продолжаем дальше. То есть на каждом последующем шаге вычислений (итераций) предыдущие значения X n +1 и Y n +1 надо подставлять в формулы (1) в качестве новых значение X n и Y n .

В программе « Microsoft Excel» можно сделать 32000 подобных «шагов»-вычислений, а затем построить («точками») график функции Y n +1 = f(X n +1), который и будет похож на «пылающее солнце». Более того, меняя числовые значения параметров p и q, на том же графике можно увидеть и другие объекты; например, при p = – 0,5; q = 0,4999 вместо «солнца» получится «спиральная галактика».

Представлю алгоритм, который я составила, для построения в программе «Microsoft Excel» фракталов Мандельброта «пылающее солнце» и «спиральная галактика». На практике для достижения приемлемой точности достаточно 100 итераций.

Таблица 1 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «пылающее солнце» (для 100 итераций)

6.Записать в ячейку H1 переменную Y n +1 . 7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0.

11.Ввести в ячейку D2 значение -0,5219.

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Таблица 2 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «спиральная галактика» (для 100 итераций)

1.Записать в ячейку А1 переменную X n

2.Записать в ячейку В1 переменную Y n .

3.Записать в ячейку D1 параметр р.

4.Записать в ячейку E1 параметр q.

5.Записать в ячейку G1 переменную X n +1 .

6.Записать в ячейку H1 переменную Y n +1 .

7.Ввести в ячейку А2 значение 0.

8.Ввести в ячейку В2 значение 0. .

9.Ввести в ячейку А3 формулу =G2.

10.Ввести в ячейку В3 формулу =H2.

11.Ввести в ячейку D2 значение -0,5.

12.Ввести в ячейку E2 значение 0,4999.

13.Ввести в ячейку G2 формулу =A2^2-B2^2+$D$2

14.Ввести в ячейку H2 формулу =2*A2*B2+$E$2

15.Растянуть ячейку А3 за правый нижний уголок до A101.

16.Растянуть ячейку В3 за правый нижний уголок до B101.

17.Растянуть ячейку G2 за правый нижний уголок до G101.

18.Растянуть ячейку H2 за правый нижний уголок до H101.

19.Выделить область значений от G2 до H101.

20.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал «кривая Гильберта», заданный формулой (2):

y (x ) = (cos 0,5 x ⋅ cos 200x + |x | 0,5 − 0,7)(4 − x 2) 0,01 . Найдем область допустих значений данного выражения. Под арифметическим квадратным корнем находится функция cos(x), значит, cos(x) ≥ 0.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала «кривая Гильберта» по данной формуле (2) в допустимой области значений, выбрав шаг равный 0,01.

Таблица 3 .

Алгоритм построения в программе “Microsoft Excel” фрактала «кривая Гильберта»

1.Записать в ячейку A1 переменную х.

2.Записать в ячейку B1 переменную у.

3.Записать в ячейку A2 значение -π/2, согласно области допустимых значений XЄ[-π/2; π/2],

4.Ввести в ячейку A3 формулу =A2+0,01.

5.Растянуть ячейку А3 за правый нижний уголок до ячейки А316 (до значения 1,57).

6.Ввести в ячейку В2 формулу

=((КОРЕНЬ(COS(A2)))*COS(200*A2)+КОРЕНЬ(ABS(A2))-0,7)*(4-A2*A2)^0,01

7.Растянуть ячейку В2 за правый нижний уголок до ячейки В316.

8.Выделить область значений от А2 до В316.

9.Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная->Точечная с гладкими кривыми

Рассмотрим фрактал Мандельброта «кривая Дракона», заданный системами уравнений (3) и (4) соответственно:

Сначала полагаем X n = 0; Y n = 0. Задаем случайным образом параметр m, который меняется от 0 до 1. Если m > 0,5, то применяем систему уравнений (3) для построения фрактала, иначе - (4). Каждое новое значение получается из предыдущего в зависимости от случайного числа.

Представлю алгоритм, который я составила, для построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона».

Таблица 4 .

Алгоритм построения в программе “Microsoft Excel” фрактала Мандельброта «кривая Дракона»

1. Записать в ячейку А1 номер n.

2. Записать в ячейку В1 случайную величину m.

3. В ячейку С1 записать х.

4. В ячейку D1 записать у.

5. В ячейку А2 записать 1.

6. В ячейку А3 ввести формулу =A2+1

7. Растянуть А3 до ячейки А 11363

8. В ячейку В2 записать функцию случайного числа =СЛЧИС()

9. Растянуть ячейку В2 до В 11363

10. Ввести в ячейку С2 значение 0

11. Ввести в ячейку С3 формулу =ЕСЛИ(B3>0,5;-0,4*C2-1;0,76*C2-0,4*D2)

12. Растянуть ячейку С3 до ячейки С 11363

13. Ввести в ячейку D2 значение 0.

14. Ввести в ячейку D3 формулу =ЕСЛИ(B3>0,5;-0,4*D2+0,1;0,4*C2+0,76*D2)

15. Растянуть ячейку D3 до ячейки D11363

16. Выделить ячейки от С2 до D11363

17. Для построения фигуры сделать следующее:

Вставка->Диаграммы->Точечная

Заключение

Компьютер можно характеризовать как новое средство познания. Благодаря ему, можно увидеть связи и значения, которые до сих пор были скрыты от нас.

Выполняя исследовательскую работу, я убедилась в том, что область применения фракталов чрезвычайно велика. Их помощь необходима, например, когда требуется задать линии и поверхности очень сложной формы с помощью нескольких коэффициентов.

Можно сказать, что фактически найден способ легкого, удобного представления сложных неевклидовых объектов, образы которых похожи на природные.

Фракталы позволяют посмотреть на математику совсем с другой стороны, открывают нам глаза. Казалось бы, производятся обычные расчёты с обычными цифрами, однако это даёт нам по-своему уникальные, неповторимые результаты, которые позволяют почувствовать себя творцом природы. Фракталы дают понять, что математика - это тоже наука о прекрасном.

Список литературы:

1.Бенуа Мандельброта. «The Fractal Geometry of Nature», 1977.

2.Мандельброт Б. Фрактальная геометрия природы. М.: Институт компьютерных исследований, 2002. - 656 с.

3.Морозов А.Д. Введение в теорию фракталов. Москва-Ижевск: Институт компьютерных исследований, 2002. - 160 с.

4.О фракталах. [Электронный ресурс] - Режим доступа. - URL: http://elementy.ru/posters/fractals

5.Перерва Л.М., Юдин В.В. П 27 Фрактальное моделирование: учебное пособие / под общ. ред. В.Н. Гряника. Владивосток: Изд-во ВГУЭС, 2007. - 186 с.

Самые гениальные открытия в науке способны кардинально изменить человеческую жизнь. Изобретенная вакцина может спасти миллионы людей, создание оружия, наоборот, эти жизни отнимает. Совсем недавно (в масштабе человеческой эволюции) мы научились «укрощать» электричество — и теперь не можем себе представить жизнь без всех этих удобных устройств, использующих электроэнергию. Но есть и такие открытия, которым мало кто придает значение, хотя они тоже сильно влияют на нашу жизнь.

Одно из таких «незаметных» открытий — фракталы. Вам наверняка доводилось слышать это запоминающееся слово, но знаете ли вы, что оно означает и как много интересного скрыто в этом термине?

В каждом человеке заложена природная любознательность, стремление познавать окружающий его мир. И в этом стремлении человек старается придерживаться логики в суждениях. Анализируя процессы, происходящие вокруг него, он пытается найти логичность происходящего и вывести некоторую закономерность. Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно. Тем не менее даже в хаосе можно найти связь между событиями. И эта связь — фрактал.

Наша маленькая дочь, четырех с половиной лет, сейчас находится в том прекрасном возрасте, когда число вопросов «Почему?» многократно превышает число ответов, которые взрослые успевают давать. Не так давно, рассматривая поднятую с земли ветку, дочка вдруг заметила, что эта ветка, с сучками и ответвлениями, сама похожа на дерево. И, конечно, дальше последовал привычный вопрос «Почему?», на который родителям пришлось искать простое объяснение, понятное ребенку.

Обнаруженная ребенком схожесть отдельной веточки с целым деревом — это очень точное наблюдение, которое лишний раз свидетельствует о принципе рекурсивного самоподобия в природе. Очень многие органические и неорганические формы в природе формируются аналогично. Облака, морские раковины, «домик» улитки, кора и крона деревьев, кровеносная система и так далее — случайные формы всех этих объектов могут быть описаны фрактальным алгоритмом.

⇡ Бенуа Мандельброт: отец фрактальной геометрии

Само слово «фрактал» появилось благодаря гениальному ученому Бенуа Мандельброту (Benoît B. Mandelbrot).

Он сам придумал этот термин в семидесятых годах прошлого века, позаимствовав слово fractus из латыни, где оно буквально означает «ломанный» или «дробленный». Что же это такое? Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе.

Математическая база для появления теории фракталов была заложена за много лет до рождения Бенуа Мандельброта, однако развиться она смогла лишь с появлением вычислительных устройств. В начале своей научной деятельности Бенуа работал в исследовательском центре компании IBM. В то время сотрудники центра трудились над передачей данных на расстояние. В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным.

Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась.

При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден.

Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров-завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Например, французский математик Пьер Жозе Луи Фату (Pierre Joseph Louis Fatou) описал это множество более чем за семьдесят лет до открытия Бенуа Мандельбротом. Если же говорить про принципы самоподобия, то о них упоминалось еще в трудах Лейбница и Георга Кантора.

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia).

Гастон Жюлиа (всегда в маске — травма с Первой мировой войны)

Этот французский математик задался вопросом, как будет выглядеть множество, если построить его на основе простой формулы, проитерированной циклом обратной связи. Если объяснить «на пальцах», это означает, что для конкретного числа мы находим по формуле новое значение, после чего подставляем его снова в формулу и получаем еще одно значение. Результат — большая последовательность чисел.

Чтобы получить полное представление о таком множестве, нужно проделать огромное количество вычислений — сотни, тысячи, миллионы. Вручную это сделать было просто нереально. Но когда в распоряжении математиков появились мощные вычислительные устройства, они смогли по-новому взглянуть на формулы и выражения, которые давно вызывали интерес. Мандельброт был первым, кто использовал компьютер для просчета классического фрактала. Обработав последовательность, состоящую из большого количества значений, Бенуа перенес результаты на график. Вот что он получил.

Впоследствии это изображение было раскрашено (например, один из способов окрашивания цветом — по числу итераций) и стало одним из самых популярных изображений, какие только были созданы человеком.

Как гласит древнее изречение, приписываемое Гераклиту Эфесскому, «В одну и ту же реку нельзя войти дважды». Оно как нельзя лучше подходит для трактования геометрии фракталов. Как бы детально мы ни рассматривали фрактальное изображение, мы все время будем видеть схожий рисунок.

Желающие посмотреть, как будет выглядеть изображение пространства Мандельброта при многократном увеличении, могут сделать это, загрузив анимационный GIF .

⇡ Лорен Карпентер: искусство, созданное природой

Теория фракталов скоро нашла практическое применение. Поскольку она тесно связана с визуализацией самоподобных образов, неудивительно, что первыми, кто взял на вооружение алгоритмы и принципы построения необычных форм, были художники.

Будущий сооснователь легендарной студии Pixar Лорен Карпентер (Loren C. Carpenter) в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов.

В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением.

Такая аналогия была выбрана математиком не случайно. Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. «Да, — говорили они, — это красивые картинки, но не более. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике.

Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж.

Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера.

Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм.

Одна из первых визуализаций 3D по фрактальному алгоритму

Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm.

Анимация рендерилась на компьютере VAX-11/780 от Digital Equipment Corporation с тактовой частотой пять мегагерц, причем прорисовка каждого кадра занимала около получаса.

Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» (The Wrath of Khan) Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности.

В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур.

⇡ Фрактальные антенны: лучше меньше, да лучше

За последние полвека жизнь стремительно стала меняться. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?» и «Как оно работает?». Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью.

Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы.

Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн (Nathan Cohen) после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью.

Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох (Helge von Koch) придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом. Определение немного сложное для восприятия, но на рисунке все ясно и просто.

Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей

Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой.

Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными.

В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны.

⇡ Фрактальные измерения: умом не понять

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Последний, как и многие другие известные математики, очень любил общаться с детьми, задавая им вопросы и получая неожиданные ответы. Иногда это приводило к удивительным последствиям. Так, например, девятилетний племянник Эдварда Каснера придумал хорошо всем известное теперь слово «гугол», обозначающее единицу со ста нулями. Но вернемся к фракталам. Американский математик любил задавать вопрос, какова длина береговой линии США. Выслушав мнение собеседника, Эдвард сам говорил правильный ответ. Если измерять длину по карте ломаными отрезками, то результат окажется неточным, ведь береговая линия имеет большое количество неровностей. А что будет, если измерять максимально точно? Придется учитывать длину каждой неровности — нужно будет измерять каждый мыс, каждую бухту, скалу, длину скалистого уступа, камня на ней, песчинки, атома и так далее. Поскольку число неровностей стремится к бесконечности, измеренная длина береговой линии будет при измерении каждой новой неровности увеличиваться до бесконечности.

Чем меньше мера при измерении, тем больше измеряемая длина

Интересно, что, следуя подсказкам Эдварда, дети намного быстрее взрослых говорили правильное решение, в то время как у последних были проблемы с принятием такого невероятного ответа.

На примере этой задачи Мандельброт предложил использовать новый подход к измерениям. Поскольку береговая линия близка к фрактальной кривой, значит, к ней можно применить характеризующий параметр — так называемую фрактальную размерность.

Что такое обычная размерность — понятно любому. Если размерность равна единице, мы получаем прямую, если два — плоскую фигуру, три — объем. Однако такое понимание размерности в математике не срабатывает с фрактальными кривыми, где этот параметр имеет дробное значение. Фрактальную размерность в математике можно условно рассматривать как «неровность». Чем выше неровность кривой, тем больше ее фрактальная размерность. Кривая, обладающая, по Мандельброту, фрактальной размерностью выше ее топологической размерности, имеет аппроксимированную протяженность, которая не зависит от количества измерений.

В настоящее время ученые находят все больше и больше областей для применения теории фракталов. С помощью фракталов можно анализировать колебания котировок на бирже, исследовать всевозможные естественные процессы, как, например, колебание численности видов, или моделировать динамику потоков. Фрактальные алгоритмы могут быть использованы для сжатия данных, например для компрессии изображений. И кстати, чтобы получить на экране своего компьютера красивый фрактал, не обязательно иметь докторскую степень.

⇡ Фрактал в браузере

Пожалуй, один из самых простых способов получить фрактальный узор — воспользоваться онлайновым векторным редактором от молодого талантливого программиста Toby Schachman . В основе инструментария этого простого графического редактора лежит все тот же принцип самоподобия.

В вашем распоряжении имеется всего две простейших формы — четырехугольник и круг. Вы можете добавлять их на холст, масштабировать (чтобы масштабировать вдоль одной из осей, удерживайте клавишу Shift) и вращать. Перекрываясь по принципу булевых операций сложения, эти простейшие элементы образуют новые, менее тривиальные формы. Далее эти новые формы можно добавлять в проект, а программа будет повторять генерирование этих изображений до бесконечности. На любом этапе работы над фракталом можно возвращаться к любой составляющей сложной формы и редактировать ее положение и геометрию. Увлекательное занятие, особенно если учесть, что единственный инструмент, который вам нужен для творчества, — браузер. Если вам будет непонятен принцип работы с этим рекурсивным векторным редактором, советуем вам посмотреть видео на официальном сайте проекта, на котором подробно показывается весь процесс создания фрактала.

⇡ XaoS: фракталы на любой вкус

Многие графические редакторы имеют встроенные средства для создания фрактальных узоров. Однако эти инструменты обычно являются второстепенными и не позволяют выполнить тонкую настройку генерируемого фрактального узора. В тех случаях, когда необходимо построить математически точный фрактал, на помощь придет кроссплатформенный редактор XaoS . Эта программа дает возможность не только строить самоподобное изображение, но и выполнять с ним различные манипуляции. Например, в режиме реального времени вы можете совершить «прогулку» по фракталу, изменив его масштаб. Анимированное движение вдоль фрактала можно сохранить в виде файла XAF и затем воспроизвести в самой программе.

XaoS может загружать случайный набор параметров, а также использовать различные фильтры постобработки изображения — добавлять эффект смазанного движения, сглаживать резкие переходы между точками фрактала, имитировать 3D-картинку и так далее.

⇡ Fractal Zoomer: компактный фрактальный генератор

По сравнению с другими генераторами изображений фракталов имеет несколько преимуществ. Во-первых, он совсем небольшой по размеру и не требует установки. Во-вторых, в нем реализована возможность определять цветовую палитру рисунка. Вы можете выбирать оттенки в цветовых моделях RGB, CMYK, HVS и HSL.

Также очень удобно использовать опцию случайного подбора цветовых оттенков и функцию инвертирования всех цветов на картинке. Для настройки цвета имеется функция цикличного перебора оттенков — при включении соответствующего режима программа анимирует изображение, циклично меняя на нем цвета.

Fractal Zoomer может визуализировать 85 различных фрактальных функций, причем в меню программы наглядно показываются формулы. Фильтры для постобработки изображения в программе имеются, хотя и в небольшом количестве. Каждый назначенный фильтр можно в любой момент отменить.

⇡ Mandelbulb3D: редактор трехмерных фракталов

Когда употребляется термин «фрактал», чаще всего подразумевается плоское двухмерное изображение. Однако фрактальная геометрия выходит за рамки 2D-измерения. В природе можно найти как примеры плоских фрактальных форм, скажем, геометрию молнии, так и трехмерные объемные фигуры. Фрактальные поверхности могут быть трехмерными, и одна из очень наглядных иллюстраций 3D-фракталов в повседневной жизни — кочан капусты. Наверное, лучше всего фракталы можно разглядеть в сорте романеско — гибриде цветной капусты и брокколи.

А еще этот фрактал можно съесть

Создавать трехмерные объекты с похожей формой умеет программа Mandelbulb3D . Чтобы получить трехмерную поверхность с использованием фрактального алгоритма, авторы данного приложения, Дениэл Уайт (Daniel White) и Пол Ниландер (Paul Nylander), преобразовали множество Мандельброта в сферические координаты. Созданная ими программа Mandelbulb3D представляет собой самый настоящий трехмерный редактор, который моделирует фрактальные поверхности разных форм. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым».

Он может походить на растение, может напоминать странное животное, планету или что-нибудь другое. Этот эффект усиливается благодаря продвинутому алгоритму визуализации, который дает возможность получать реалистичные отражения, просчитывать прозрачность и тени, имитировать эффект глубины резкости и так далее. В Mandelbulb3D имеется огромное количество настроек и параметров визуализации. Можно управлять оттенками источников света, выбирать фон и уровень детализации моделируемого объекта.

Фрактальный редактор Incendia поддерживает двойное сглаживание изображения, содержит библиотеку из полусотни различных трехмерных фракталов и имеет отдельный модуль для редактирования базовых форм.

Приложение использует фрактальный скриптинг, с помощью которого можно самостоятельно описывать новые типы фрактальных конструкций. В Incendia есть редакторы текстур и материалов, а движок визуализации позволяет использовать эффекты объемного тумана и различные шейдеры. В программе реализована опция сохранения буфера при длительном рендеринге, поддерживается создание анимации.

Incendia позволяет экспортировать фрактальную модель в популярные форматы трехмерной графики — OBJ и STL. В состав Incendia включена небольшая утилита Geometrica — специальный инструмент для настройки экспорта фрактальной поверхности в трехмерную модель. С помощью этой утилиты можно определять разрешение 3D-поверхности, указывать число фрактальных итераций. Экспортированные модели могут быть использованы в 3D-проектах при работе с такими трехмерными редакторами, как Blender, 3ds max и прочие.

В последнее время работа над проектом Incendia несколько затормозилась. На данный момент автор ищет спонсоров, которые помогли бы ему развивать программу.

Если вам не хватает фантазии нарисовать в этой программе красивый трехмерный фрактал — не беда. Воспользуйтесь библиотекой параметров, которая находится в папке INCENDIA_EX\parameters. С помощью файлов PAR вы сможете быстро найти самые необычные фрактальные формы, в том числе и анимированные.

⇡ Aural: как поют фракталы

Мы обычно не рассказываем о проектах, работа над которыми только ведется, однако в данном случае мы должны сделать исключение, уж очень это необычное приложение. Проект под названием Aural придумал тот же человек, что и Incendia. Правда, на этот раз программа не визуализирует фрактальное множество, а озвучивает его, превращая в электронную музыку. Идея очень любопытная, особенно если учесть необычные свойства фракталов. Aural — это аудиоредактор, генерирующий мелодии с использованием фрактальных алгоритмов, то есть, по сути, это звуковой синтезатор-секвенсор.

Последовательность звуков, выдаваемая этой программой, необычна и… красива. Она вполне может пригодиться для написания современных ритмов и, как нам кажется, особенно хорошо подходит для создания звуковых дорожек к заставкам телевизионных и радиопередач, а также «петель» фоновой музыки к компьютерным играм. Рамиро пока не предоставил демонстрационной версии своей программы, но обещает, что, когда он это сделает, для того, чтобы работать с Aural, не нужно будет изучать теорию фракталов — достаточно просто поиграться с параметрами алгоритма генерирования последовательности нот. Послушать, как звучат фракталы, и .

Фракталы: музыкальная пауза

Вообще-то фракталы могут помочь написать музыку даже без программного обеспечения. Но это может сделать только тот, кто по-настоящему проникнут идеей природной гармонии и при этом не превратился в несчастного «ботана». Тут есть смысл брать пример с музыканта по имени Джонатан Колтон (Jonathan Coulton), который, помимо всего прочего, пишет композиции для журнала Popular Science. И не в пример другим исполнителям, Колтон все свои произведения публикует под лицензией Creative Commons Attribution-Noncommercial, которая (при использовании в некоммерческих целях) предусматривает свободное копирование, распространение, передачу произведения другим лицам, а также его изменение (создание производных произведения), чтобы приспособить его к своим задачам.

У Джонатана Колтона, конечно же, есть песня про фракталы.

⇡ Заключение

Во всем, что нас окружает, мы часто видим хаос, но на самом деле это не случайность, а идеальная форма, разглядеть которую нам помогают фракталы. Природа — лучший архитектор, идеальный строитель и инженер. Она устроена очень логично, и если где-то мы не видим закономерности, это означает, что ее нужно искать в другом масштабе. Люди все лучше и лучше это понимают, стараясь во многом подражать естественным формам. Инженеры проектируют акустические системы в виде раковины, создают антенны с геометрией снежинок и так далее. Уверены, что фракталы хранят в себе еще немало секретов, и многие из них человеку еще лишь предстоит открыть.

Это абстрактные математические объекты, обладающие свойством самоподобия . Т.е., части фрактала подобны самому фракталу, а части этих частей подобны частям и т.д. Это хорошо видно на данной анимации . Увеличивая приближение, мы видим вновь похожие структуры.

Однако, возникает вопрос - насколько всеобщи фрактальные математические модели в применении к реальному Миру? В отдельных случаях они применимы. Например, при описании сильно изрезанных морских берегов - многократно увеличивая полученные из Космоса снимки таких берегов, мы будем получать меньшие структуры, подобные большим. Но, является ли Мир в целом фрактальным? Т.е., углубляясь в микромир и глядя на всё большие масштабы мегамира, будем ли мы видеть аналогичные структуры? Конечно, так было бы проще - не нужно открывать и придумывать ничего нового, всё построено одинаково: вокруг звёзд вращаются планеты, вокруг планет - спутники, вокруг ядер - электроны. Продолжая далее, можно предположить, что электроны, протоны и нейтроны также являются системами, в которых есть центральное тело и вращающиеся вокруг него более мелкие тела.

Однако, это было бы очень скучно - видеть везде одно и тоже. Никакой принципиальной новизны... Вряд ли Природа столь скучна и однообразна! Весь наш опыт говорит о том, что есть не только сходство, но и различие даже между самыми родственными объектами (например, между кристаллами из одной друзы, между снежинками, между людьми-близнецами и т.д.). Конечно, в Природе есть всеобщие законы , к открытию которых стремится познающий разум (это - главная и величайшая его цель; её прямо ставит перед собой философия , как вершина человеческой познавательной деятельности). Потому и нечто общее, схожее есть на всех уровнях организации материи: от элементарных частиц до психики, сознания, социума. Однако, формы проявления всеобщих законов на разных уровнях организации материи и в разных её частях различны. Поэтому, мы наблюдаем разные структуры в разных частях Мира и на разных его уровнях, хотя и подчиняющиеся одним законам (которые ещё далеко не в полной мере открыты нами).

Предлагаю обсудить эту интереснейшую тему, тем более, что она была уже поднята нашим уважаемым Solaris-ом в его цикле научно-фантастических рассказов «Вселенная Инга Аулэнга» . В них автор высказывает идею, что Вселенная подобна клетке многоклеточного организма, а другие вселенные являются другими клетками этого организма. Другая идея Solaris-а состоит в том, что отдельный протон подобен всей Вселенной. Всё это не что иное, как идеи о фрактальности Мира .

Видеоролик , о котором я упоминал выше (с хорошо подобранной музыкой!) вызывает интересное ощущение проникновение вглубь «материи», своего собственного уменьшения при этом. Как сказал ещё в 1959 году выдающийся физик Ричард Фейнман, предвидя развитие нанотехнологий, «там внизу - много места ». И это телесно ощущаешь, когда смотришь этот ролик.
Но, главное - он заставляет задуматься над фундаментальными вопросами о связи макро-, микро- и мегамиров . Что произойдёт, если мы вдруг резко уменьшимся? Привычный нам макромир с его проблемами и несуразностями уходит куда-то в стороны, в область мегамира. И вместе с этим для нас теряют значение его процессы, его размеры, времена и энергии. Их как бы уже нет для нас. В том новом микромире, куда мы «переселяемся», возникают свои масштабы пространства, времени и энергии. Наша жизнь в нём будет лишь мгновением для существ, оставшихся в нашем прежнем макромире, наш размер будет для них за пределами видимости даже в самые мощные микроскопы, а наши энергии будут... (какие? больше? меньше?). Поэтому, и мы для того мира, и он для нас будем едва ощутимыми загадками, оказывающими друг на друга исчезающе малое влияние.
А, может быть, всё наоборот? И микро-, макро- и мегамиры как-то тесно связаны друг с другом и существенно влияют друг на друга, несмотря на кардинальное различие масштабов? Хотя бы через те самые всеобщие законы, о которых я говорил выше.
Обо всём этом заставляет задуматься этот интересный видеоролик.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Тема : Фракталы - особые объекты живого и неживого мира

Хабаровск ТОГУ 2015

  • Оглавление
  • фрактал геометрический фрактальный графика
  • История фракталов
  • Классификация фракталов
  • Геометрические фракталы
  • Алгебраические фракталы
  • Применение фракталов
  • Фракталы и мир вокруг нас
  • Фрактальная графика
  • Применение фракталов
  • Естественные науки
  • Радиотехника
  • Информатика
  • Экономика и финансы

История фракталов

Очень часто мы встречаемся с особыми объектами, но мало кто знает, что это и есть фракталы. Фракталы - уникальные объекты, порожденные непредсказуемыми движениями хаотического мира. Они встречаются как в малых объектах, например, клеточная мембрана, и огромных, таких как Солнечная система и Галактика. В повседневной жизни мы можем увидеть фракталы на рисунке обоев, на ткани, заставке рабочего стола на компьютере, а в природе - это растения, морские животные, природные явления.

Учёные, с древних времен, зачарованы фракталами, программисты и специалисты в области компьютерной графики также любят эти объекты. Открытие фракталов стало революцией в человеческом восприятии мира и открытием новой эстетики искусства и науки.

Так что же такое фракталы? Фрактал - геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре в целом.

Термин фрактал был предложен в 1975г. Бенуа Мандельбротом для обозначения нерегулярных, самоподобных структур, которыми он занимался. Рождением фрактальной геометрии является выход его книги “The Fractal Geometry of Nature” в 1977г. Его работы базировались на трудах ученых Пуанкаре, Фату, Жюлиа, Кантора и Хаусдорфа, работавших в 1875 ? 1925 годах в этой же области. Но удалось объединить их работы в единую систему только в наше время.

Понятие «фрактал» образовано от латинского «fractus» ? состоящий из фрагментов. Одно из определений звучит так: «Фракталом называется структура, состоящая из частей, которые, в каком?то смысле подобны целому».

Бенуа Мандельброт в своих работах привел яркие примеры применения фракталов для объяснения некоторых природных явлений. Он уделил большое внимание интересному свойству, которым обладают многие фракталы. Дело в том, что часто фрактал можно разбить на сколь угодно малые части так, что каждая часть окажется просто уменьшенной копией целого. Иначе говоря, если мы будем смотреть на фрактал в микроскоп, то с удивлением увидим ту же самую картину, что и без микроскопа. Это свойство самоподобия резко отличает фракталы от объектов классической геометрии.

Для современных учёных изучение фракталов? не просто новая область познания. Это открытие нового типа геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе, и в безграничной Вселенной. В настоящее время Мандельброт и другие учёные расширили область фрактальной геометрии так, что она может быть применима практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике.

Классификация фракталов

Существуют различные классификации фракталов.

Основной классификацией фракталов является разделение на геометрические и алгебраические.

Геометрические фракталы обладают точным самоподобием, а алгебраические - приближённым самоподобием.

Существует также разделение на природные и рукотворные фракталы.

К рукотворным относятся фракталы, которые были придуманы учёными, они при любом масштабе обладают фрактальными свойствами. На природные фракталы накладывается ограничение на область существования -- то есть максимальный и минимальный размер, при которых у объекта наблюдаются фрактальные свойства.

Самыми простыми фракталами являются геометрические фракталы.

Геометрические фракталы

Геометрические фракталы по-другому называют классическими, детерминированными или линейными. Они являются самыми наглядными, так как обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите всё тот же узор.

В двухмерном случае такие фракталы можно получить, задав некоторую ломаную, называемую генератором. За один шаг алгоритма каждый из отрезков данной ломаной (инициатора) заменяется на ломаную-генератор в соответствующем масштабе. В результате бесконечного повторения этой процедуры получается фрактальная кривая. Несмотря на кажущуюся сложность этой кривой, её форма определяется лишь формой генератора.

Наиболее известные геометрические фракталы: кривая Коха, кривая Минковского, кривая Леви, кривая дракона, салфетка и ковер Серпинского, пятиугольник Дюрера.

Построение некоторых геометрических фракталов

1). Кривая Коха.

Она была изобретена в 1904 году немецким математиком по имени Хельге фон Кох. Для её построения берется единичный отрезок, делится на три равные части и среднее звено заменяется равносторонним треугольником без этого звена. На следующем шаге повторяем операцию для каждого из четырёх получившихся отрезков. В результате бесконечного повторения данной процедуры получается фрактальная кривая.

2). Салфетка Серпинского.

В 1915 году польский математик Вацлав Серпинский придумал занимательный объект. Для его построения берётся сплошной равносторонний треугольник. На первом шаге из центра удаляется перевернутый равносторонний треугольник. На втором шаге удаляется три перевернутых треугольника из трёх оставшихся треугольников и т.д. По теории конца этому процессу не будет, и в треугольнике не останется живого места, но и на части он не распадется - получится объект, состоящий из одних только дырок.

3). Дракон Хартера-Хэйтуэя.

Дракон Хартера, также известный как дракон Хартера-Хейтуэя, впервые исследовали физикии NASA ? Джон Хейтуэй, Вильям Хартер и Брюс Бенкс. Он был описан в 1967 году Мартином Гарднером в колонке «Математические игры» журнала «Scientific American».

Каждый из отрезков прямой на следующем шаге заменяется на два отрезка, образующих боковые стороны равнобедренного прямоугольного треугольника, для которого исходный отрезок являлся бы гипотенузой. В результате отрезок как бы прогибается под прямым углом. Направление прогиба чередуется. Первый отрезок прогибается вправо (по ходу движения слева направо), второй - влево, третий - опять вправо и т.д.

Примеры геометрических фракталов

Кривая Коха Салфетка Серпинского

Дракон Хартера-Хэйтуэя

Вторая большая группа фракталов - алгебраические. Свое название они получили за то, что их строят на основе алгебраических формул.

Алгебраические фракталы

Сложные (алгебраические) фракталы невозможно создать без помощи компьютера. Для получения красочных результатов этот компьютер должен обладать мощным математическим сопроцессором и монитором с высоким разрешением. Свое название они получили за то, что их строят на основе алгебраических формул. В результате математической обработки данной формулы на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. Практически каждая точка на экране компьютера как отдельный фрактал.

Наиболее известные алгебраические фракталы: множества Мандельброта и Жюлиа, бассейны Ньютона.

Алгебраические фракталы обладают приближенным самоподобием. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными.

АЛГЕБРАИЧЕСКИЕ ФРАКТАЛЫ

Приближения множества Мандельброта

Фракталы находят всё большее и большее применение в науке. Основная причина в том, что они описывают реальный мир лучше, чем традиционная физика и математика.

Применение фракталов

1). Теория хаоса: фракталы всегда ассоциируются со словом хаос. Теория хаоса определяется как учение о сложных нелинейных динамических системах. Хаос - это отсутствие предсказуемости. Он возникает в динамических системах, когда для двух очень близких начальных значений система ведет себя совершенно по-разному. Пример хаотичной динамической системы - погода. Примерами подобных систем являются турбулентные потоки, биологические популяции, общество и его подсистемы: экономические, политические и другие социальные системы. Одной из центральных концепций в этой теории является невозможность точного предсказания состояния системы. Теория хаоса сосредотачивает внимание не на беспорядке системы (наследственной непредсказуемости системы), а на унаследованном ей порядке (общем в поведении похожих систем). Таким образом, наука о хаосе - это система представлений о различных формах порядка, где случайность становится организующим принципом.

2). Экономика: анализ рынка ценных бумаг.

3). Астрофизика: описание процессов кластеризации галактик во Вселенной.

4). Геология: изучение шероховатости минералов;

5). Картография: изучение форм береговых линий; изучение разветвленной сети речных русел.

6). Механика жидкостей и газов, физика поверхностей:

- динамика и турбулентность сложных потоков.

- моделирование языков пламени;

7). Биология и медицина:

- моделирование популяций животных и миграции птиц;

- моделирование эпидемий;

- анализ строения кровеносной системы;

- рассмотрение сложных поверхностей клеточных мембран;

- описание процессов внутри организма, например, биения сердца.

8). Фрактальные антенны: использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка на зданиях внешних антенн. Он вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, а затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

9). Сжатие изображений: достоинства алгоритмов фрактального сжатия изображений - очень маленький размер упакованного файла и малое время восстановления картинки. Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

10). Компьютерная графика: компьютерная графика переживает сегодня период интенсивного развития. Она оказалась способна воссоздать на экране монитора бесконечное разнообразие фрактальных форм и пейзажей, погружая зрителя в удивительное виртуальное пространство. В настоящие время при помощи сравнительно простых алгоритмов появилась возможность создавать трёхмерные изображения фантастических ландшафтов и форм, которые способны преобразовываться во времени в ещё более захватывающие картины. Склонность фракталов походить на горы, цветы и деревья эксплуатируется некоторыми графическими редакторами (например, фрактальные облака из 3D studio MAX, фрактальные горы в World Builder). Фрактальные модели сегодня широко применяют в компьютерных играх, создавая в них обстановку, которую уже трудно отличить от реальности.

Конец ХХ века ознаменовался не только открытием поразительно красивых и бесконечно разнообразных структур, названных фракталами, но и осознанием фрактального характера природы. Окружающий нас мир очень разнообразен, и его объекты не укладываются в жёсткие рамки евклидовых линий и поверхностей.

Фракталы и мир вокруг нас

« Красота всегда относительна...Не следует полагать, что берега океана и впрямь бесформенны только потому, что их форма отлична от правильной формы построенных нами причалов; форму гор нельзя считать неправильной на основании того, что они не являются правильными конусами или пирамидами; из того, что расстояния между звёздами неодинаковы, ещё не следует, что их разбросала по небу неумелая рука. Эти неправильности существуют только в нашем воображении, на самом деле они таковыми не являются и никак не мешают истинным проявлениям жизни на Земле, ни в царстве растений и животных, ни среди людей». Эти слова английского учёного XVII в. Ричарда Бентли свидетельствуют о том, что идея объединить формы берегов, гор и небесных объектов и противопоставить их евклидовым построениям возникла в умах людей уже очень давно.

Галилео Галилей сказал, что «великая книга Природы написана на языке геометрии». Сейчас с уверенностью можно утверждать, что она написана на языке фрактальной геометрии.

То, что мы наблюдаем в природе, часто интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Причудливые формы береговых линий и замысловатые изгибы рек, изломанные поверхности горных хребтов и очертания облаков, раскидистые ветви деревьев и коралловые рифы, робкое мерцание свечи и вспененные потоки горных рек - все это фракталы. Одни из них, типа облаков или бурных потоков, постоянно меняют свои очертания, другие, подобно деревьям или горным массивам, сохраняют свою структуру неизменной. Общим для всех типов фрактальных структур является их самоподобие - основное свойство, обеспечивающее выполнение во фракталах основного закона - закона единства в многообразии мироздания.

Фрактальными структурами также являются системы и органы человека. Так, например, кровеносные сосуды многократно разветвляются, т.е. имеют фрактальную природу. Электрическая активность сердца - фрактальный процесс. Кардиологи обнаружили, что спектральные характеристики сердечных сокращений подчиняются фрактальным законам, как землетрясения и экономические феномены. В тканях пищеварительного тракта одна волнистая поверхность встроена в другую. Легкие также представляют пример того, как большая площадь «втиснута» в маленькое пространство. В действительности, вся структура человеческого тела имеет фрактальную природу; это уже признано учеными. Принцип единого простого, задающего разнообразное сложное, заложен в геноме человека, когда одна клетка живого организма содержит информацию обо всем организме в целом.

Фрактальные структуры в природе

Приведем несколько образцов фото:

Как сказал биолог Джон Холдейн, “мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать”. Фракталы - не изобретения Мандельброта. Они существуют объективно. В природных формах и процессах, в науке и искусстве, которые этот мир отображают и познают. Именно “за изменение нашего взгляда на мир благодаря идеям фрактальной геометрии” Бенуа Мандельброту в 1993 году была присуждена почётная премия Вольфа в области физики.

В настоящее время большой популярностью пользуются фрактальные картины. Они производят совершенно фантастическое впечатление. Множество тонких линий, образующих одно целое, или же необычные элементы, сплетающиеся в единую картину. Вспышки яркого света и умеренные сглаженные линии. Фрактал кажется живым. Он горит, пылает, он завлекает, и Вы не можете отвести от него глаз, изучая даже самые крохотные и незначительные детали.

Фрактальная графика

Фрактальные картины в интерьере

Применение фракталов

Естественные науки

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и тому подобное. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов). После создания кривой Коха было предложено использовать её при вычислении протяжённости береговой линии.

Радиотехника

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Коэн основал собственную компанию и наладил их серийный выпуск.

Информатика

Сжатие изображений

Фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Компьютерная графика

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких как деревья, кусты, горные ландшафты, поверхности морей и так далее. Существует множество программ, служащих для генерации фрактальных изображений.

Децентрализованные сети

Система назначения IP-адресов в сети Netsukuku (эта сеть является проектом создания распределённой самоорганизующейся одноранговой сети, способной обеспечить взаимодействие огромного количества узлов при минимальной нагрузке на центральный процессор и память) использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Экономика и финансы

А. А. Алмазов в своей книге «Фрактальная теория. Как поменять взгляд на рынки» предложил способ использования фракталов при анализе биржевых котировок, в частности -- на рынке Форекс.

Всякий раз, рассматривая фракталы, задумываешься, как прекрасен реальный мир и мир математики, и о том, что математика действительно является языком, который способен описать практически всё, что существует во Вселенной.

Библиографический список

1. Мандельброт Б. Фрактальная геометрия природы. М.: “Институт компьютерных исследований”, 2002. 656 с.

2. Морозов А.Д. Введение в теорию фракталов. Н.Новгород: Изд-во Нижегород. ун-та 1999 г. 140 с.

3. Пайтген Х.-О., Рихтер П. Х. Красота фракталов. М.: “Мир”, 1993. - 176 с.

4. Тихоплав В.Ю., Тихоплав Т.С. Гармония хаоса, или фрактальная реальность. С.-Петербург: ИД “Весь”, 2003. 340 с.

5. Федер Е. Фракталы. М: “Мир”, 1991. 254 с.

6. Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая. Ижевск: “РХД”, 2001. 528 с.

Список сайтов о фракталах

1. http://www.fractals.nsu.ru.

2. http://www.fractalworld.xaoc.ru.

3. http://www.multifractal.narod.ru.

4. http://algolist.manual.ru.

Размещено на Allbest.ru

Подобные документы

    Рассмотрение фрактальной размерности как одной из характеристик инженерной поверхности. Описание природных фракталов. Измерение длины негладкой (изломанной) линии. Подобие и скейлинг, самоподобие и самоаффинность. Соотношение "периметр-площадь".

    контрольная работа , добавлен 23.12.2015

    История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа , добавлен 12.05.2010

    Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа , добавлен 26.05.2006

    Признаки некоторых четырехугольников. Реализация моделей геометрических ситуаций в средах динамической геометрии. Особенности динамической среды "Живая геометрия", особенности построения в ней моделей параллелограмма, ромба, прямоугольника и квадрата.

    курсовая работа , добавлен 28.05.2013

    Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа , добавлен 22.03.2014

    Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.

    дипломная работа , добавлен 24.06.2010

    Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат , добавлен 20.08.2015

    Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.

    презентация , добавлен 06.12.2011

    История математизации науки. Основные методы математизации. Пределы и проблемы математизации. Проблемы применения математических методов в различных науках связаны с самой математикой (математическое изучение моделей), с областью моделирования.

    реферат , добавлен 24.05.2005

    Понятие и история исследования золотого сечения. Особенности его отражения в математике, природе, архитектуре и живописи. Порядок и принципы построения, структура и сферы практического применения золотого сечения, математическое обоснование и значение.