Что входит в состав ядра физика. Модели строения ядра. Ядерные силы. Энергия связи нуклонов в ядре, дефект массы. Ядерные реакции Изотопы. Ерюткин Евгений Сергеевич

9 класс Дата____________________

Урок № ___

Тема урока: Состав атомного ядра. Ядерные силы. Энергия связи атомных ядер.

Цели:

    образовательная : рассмотреть из каких частиц состоит ядро атома; ввести понятия зарядового и массового числа, ядерной силы, дефекта масс, энергии связи, удельной энергии связи; ознакомить учащихся с формулами заряда ядра, дефекта масс, энергии связи, удельной энергии связи;

    развивающая : способствовать развитию кругозора квантовых явлений;

    воспитывающая: воспитывать интерес к предмету , управление своим вниманием, дисциплину.

Тип урока: комбинированный.

Оборудование: мультимедийная презентация, ПК.

Ход урока

1. Организационный момент.

Приветствие с учащимися, проверка присутствующих.

2. Актуализация знаний.

Фронтальный опрос:

    Что такое явление радиоактивности?

    Какие существуют модели атомов?

    Какие виды взаимодействий в природе Вам известны?

3. Мотивация учебной деятельности

Опыты Резерфорда доказали, что атом состоит из маленького положительно заряженного ядра и вращающихся вокруг него электронов. Оказалось, что по сравнению с размером самого атома (около 10 -10 м) ядро крайне мало (около 10 -15 м). То есть ядро меньше атома в 100 000 раз.

Чтобы представить себе, что это означает, рассмотрим такую наглядную модель. Представьте себе, что атомное ядро увеличено до размеров горошины. Тогда диаметр атома будет равен высоте Останкинской телебашни.

4. Изучение нового материала

Состав атомного ядра

Дальнейшие исследования показали, что заряд атомного ядра равен произведению порядкового номера Z элемента в периодической таблице Д.И. Менделеева на элементарный заряд е.

q я =Ze

Таким образом, порядковый номер химического элемента определяет заряд атомного ядра, а, следовательно, и число электронов в атоме. Поэтому число Z называют зарядовым числом .

После открытия Резерфордом в 1911 г. атомного ядра многочисленные эксперименты подтвердили, что атомные ядра, как и сами атомы, имеют сложную структуру. В 1913 г. Резерфорд выдвинул гипотезу, согласно которой ядро атома водорода представляет собой элементарную частицу – протон, которая входит в состав ядер всех химических элементов. В то время уже было известно, что массы атомов химических элементов превышают массу атома водорода в целое число раз (то есть кратны ей).

Однако ядро не может состоять из одних протонов. Если бы это было так, то масса ядра любого химического элемента равнялась бы массе Z протонов. Но на самом деле массы ядер всех элементов гораздо больше. Поэтому в 1920 г. Резерфорд высказал предположение о существовании электрически нейтральной частицы с массой, приблизительно равной массе протона. Позднее эта частица была обнаружена экспериментально. Ее назвали нейтроном .

В 1932 г. советские ученые Е.Н. Гапон и Д.Д. Иваненко и немецкий физик Гайзенберг предложили протонно-нейтронную модель ядра атома . По этой теории все ядра состоят из двух видов частиц – протонов и нейтронов. Протоны и нейтроны называются нуклонами (от лат. nucleus ядро).

Общее число нуклонов в ядре называется массовым числом и обозначается буквой А. Массовое число А численно равно массе ядра, выраженной в атомных единицах массы и округленной до целых чисел.

Атомная единица массы (1 а. е. м.) равна 1/12 части массы атома углерода.

Число протонов соответствует порядковому (атомному) номеру элемента. Разница между массовым и зарядовым числом равна числу нейтронов.

Любой химический элемент периодической таблицы Д.И. Менделеева можно представить формулой:

А - массовое число

Z - зарядовое число

Массовое число равно сумме протонов и нейтронов.

Зарядовое число – это атомный номер, который равен числу протонов в ядре.

Ядерные силы

В природе существуют четыре типа взаимодействий: гравитация, электромагнитные, сильные и слабые. Мы рассмотрим только три из них.

1. При этом типе взаимодействия тела всегда притягиваются друг к другу. Сила взаимодействия уменьшается с увеличением расстояния между телами.

2. Взаимодействие между двумя заряженными частицами называется электромагнитным. Существует 2 типа электрических зарядов: положительный (+) и отрицательный (-). При электромагнитных взаимодействиях заряженные тела могут как притягиваться друг к другу, так и отталкиваться.

Электромагнитные взаимодействия действуют на достаточно больших расстояниях. Сила взаимодействия уменьшается с возрастанием расстояния между телами.

k (постоянная Кулона) = 9*10 9

Сравним силы гравитационного (F e-р(rpaв) ) и электромагнитного взаимодействий (F е-р(элм) ), которые действуют между протоном и электроном:

Отсюда следует, что сила гравитации для элементарных частиц намного меньше силы электромагнитного взаимодействия.

В мире элементарных частиц мы можем пренебречь гравитацией.

3. Силы, которые скрепляют отдельные протоны и нейтроны в ядре называются ядерными , а соответствующее взаимодействие сильным. Оно на много порядков величин превышает гравитационное притяжение между протонами и нейтронами в ядре и доминирует над электромагнитными силами кулоновского отталкивания одноименно заряженных протонов внутри ядра.

Важнейшей особенностью ядерных сил является короткий радиус их действия. Они действуют только внутри атомного ядра, то есть на масштабах фемтометров (10 -15 м). Законы ядерных взаимодействий – это законы квантовой физики, и они носят совершенно другой характер, чем уже известные нам гравитационные взаимодействия.

Отметим два свойства ядерных сил:

    На расстоянии между нуклонами внутри ядра порядка 1 фм и больше силы носят характер притяжения, но при сближении протонов или нейтронов на расстоянии меньше 1 фм возникают силы отталкивания. Это препятствует сжатию ядер до еще меньших размеров.

    Экспериментально доказано, что ядерные силы между двумя протонами, двумя нейтронами и протоном и нейтроном практически одинаковы. Это свойство называют зарядовой независимостью ядерных сил .

О
ткрытие протона:

С древних времен алхимики пытались получить золото из различных элементов. Но никому не удавалось превратить один элемент в другой. И только в 1919 г. Резерфорд провел опыты, в которых было впервые осуществлено превращение элементов.

Установка Резерфорда состояла из источника α-частиц и регистратора этих частиц – флуоресцирующего экрана. Все это устройство было помещено в сосуд с чистым воздухом. На экране можно было наблюдать бледные вспышки. Позднее учеными было обнаружено, что в воздухе происходит ядерная реакция, в которой α-частицы сталкиваются с ядрами азота. В результате образуются ядро кислорода и ядро водорода, которое Резерфорд назвал протоном .

Энергия связи атомных ядер

Вы знаете, что атомное ядро состоит из протонов и нейтронов, которые связаны между собой в ядре ядерными силами. Можно предположить, что масса каждого ядра должна быть равна сумме масс содержащихся в нем протонов и нейтронов.

Проверим это предположение. Масса протона и нейтрона в атомных единицах массы равны соответственно m р = 1,0073 а.е.м. и m n = 1,0087 а.е.м.

Сложив массы протонов и нейтронов, мы получим, что масса ядра гелия равна M я = 4,032 а.е.м. Однако экспериментально было обнаружено, что масса ядра гелия равна M я = 4,0026 а.е.м. Другими словами, масса ядра меньше суммы масс составляющих его нуклонов. Разность между суммой масс отдельных нуклонов и массой ядра называют дефектом масс .

Дефект массы ядра гелия равен Δm = (2 1,0073 а.е.м. + 2 1,0087 а.е.м.) - 4,0026 а.е.м. = 0,0294 а.е.м.

Для того чтобы разбить ядро на отдельные, не взаимодействующие между собой нуклоны, необходимо произвести работу по преодолению ядерных сил, то есть сообщить ядру энергию. Из закона сохранения энергии следует, что эта энергия равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные частицы, называется энергией связи ядра .

Энергию связи любого ядра можно определить с помощью формулы Эйнштейна, которая устанавливает взаимосвязь между массой и энергией:

E св = Δm с 2 = (
) с 2 , где Δm – дефект массы, с – скорость света в вакууме.

Вычислим энергию связи ядра гелия.

Для того, чтобы энергию связи получить в джоулях, дефект масс нужно выразить в килограммах.

Учитывая, что 1 а.е.м. = 1,6605 10 -27 кг, получим

Δm = 0,0294 а.е.м. = 0,0488 10 -27 кг

Е св = 0,0488 10 -27 кг (2,9979 10 8 ) 2 = 0,4388 10 -11 Дж

Это огромная величина. Образование всего 1 г гелия сопровождается выделением энергии порядка 10 12 Дж. Примерно такая же энергия выделяется при сгорании почти целого вагона каменного угля.

У
стойчивость ядер характеризует физическая величина, называемая удельной энергией связи . Она равна энергии связи, которая приходится только на одну ядерную частицу (протон или нейтрон): Е уд = Е св / А. По графику зависимости удельной энергии связи от массового числа элементов можно заметить, что для легких ядер энергия связи очень мала. Удельная энергия связи имеет наибольшее значение для ядер атомов, расположенных в средней части периодической системы элементов с массовыми числами от 28 до 138. С дальнейшим ростом массового числа энергия связи убывает.

5. Формирование умений и навыков

Определить заряд, дефект масс и энергию связи ядра атома алюминия (Z = 13, A = 27, М я = 26,9815).

6. Итоги урока

Рефлексия:

    Из каких частиц состоит атомное ядро?

    Чему равно массовое число атома?

    Как называются силы, которые удерживают протоны и нейтроны в ядре?

    Что такое дефект масс?

    Что такое энергия связи ядра?

7. Домашнее задание

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Модели строения ядра.

Как пpедставить ядpо? Это непpостой вопpос, и было пpедложено несколько моделей ядpа. Наиболее популяpными и используемыми к настоящему вpемени являются две модели: капельная и оболочечная.

Согласно капельной модели ядpо сpавнивается с каплей жидкости, т.к. между каплей жидкости и ядpом много общего. Главная общая чеpта заключается в том, что взаимодействие между молекулами жидкой капли, как и между нуклонами ядpа, обладает свойством насыщения: каждая молекула окpужена лишь вполне опpеделенным числом соседей. Силы взаимодействия между молекулами в капле коpоткодействующие. Объем капли pастет, как и у ядpа, пpопоpционально числу молекул. Сpавнение ядpа с каплей наводит еще на одну важную мысль: капля жидкости обладает повеpхностным натяжением. Есть основание считать, что и ядpо-капля обладает этим свойством. Повеpхностное натяжение стягивает каплю и делает ее шаpообpазной. Поэтому и ядpо, можно сказать, имеет шаpовую фоpму. Имеются и pазличия между каплей жидкости и ядpом атома. Ядpо заpяжено (пpотоны!), капля же обычно нейтpальна (хотя ее специально можно и заpядить). Главное же отличие в том, что капля - классическая система и в ней энеpгия - непpеpывная величина, а ядpо - типично квантовая система и его энеpгия имеет дискpетный спектp.

В оболочечной модели ядpо сpавнивается с атомом, котоpый имеет оболочечную стpуктуpу: центp атома, в котоpом сосpедоточено ядpо, окpужен слоями электpонной оболочки. На пеpвый взгляд кажется, что ядpо ничего общего не должно иметь с атомом, так как в ядpе нет никакого физически выделенного центpа, вокpуг котоpого могли бы pасполагаться слои из нуклонов. Однако нужно учесть квантовую стpуктуpу и ядpа, и атома. Ведь слои электpонной оболочки атома создаются благодаpя тому, что дискpетный энеpгетический спектp атомов таков: его энеpгетические уpовни pаспадаются на pяд сpавнительно близко лежащих гpупп, заполнение уpовней котоpых и составляет слои оболочек из электpонов. Оказалось, что спектpы энеpгии ядеp в этом отношении напоминают спектpы атомов: они также составляют гpуппы близко pасположенных уpовней. Потому постепенное заполнение нуклонами этих гpупп уpовней напоминает электpонные слои атомов. Так стpоится оболочечная модель ядеp.

Ядерные силы.

Для того, чтобы атомные ядра были устойчивыми, протоны и нейтроны должны удерживаться внутри ядер огромными силами, во много раз превосходящими силы кулоновского отталкивания протонов.

Ядерные силы – силы, действующие между ядерными частицами – нуклонами.

Свойства ядерных сил:

1. Это короткодействующие силы, действуют на расстояниях между нуклонами, порядка 10 −15 м, и резко убывают при увеличении расстояния; при расстояниях 1,4 ∙ 10 −15 м они уже практически равны 0.

2. Это самые мощные силы из всех, которыми располагает природа , поэтому взаимодействие частиц в ядре часто называют сильными взаимо­действиями.

3. Ядерным силам свойственно насыщение, т.е. нуклон взаимодействует не со всеми остальными нуклонами, а лишь с некоторыми ближайшими соседями.

4. Ядерным силам свойственна зарядовая независимость. Это значит, что с одинаковой по модулю силой притягиваются друг к другу и заря­женные, и незаряженные частицы, т.е. сила притяжения F рр между двумя протонами равна силе притяжения F пп между двумя нейтронами и равна силе притяжения F рп между протоном и нейтроном.

5. Ядерные силы не являются центральными, т.е. они не направлены вдоль прямой, соединяющей центры этих зарядов.

6. Ядерные силы являются так называемыми обменными силами.

Напоминаю, что различают четыре вида фундаментальных взаимодействий в природе: сильное, электромагнитное, слабое и гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение и отталкивание их составных частей. Оно действует на расстоянии порядка 10 -13 см. При определенных условиях сильное взаимодействие очень прочно связывает частицы, в результате чего образуются мате­риальные системы с высокой энергией связи - атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но значительно более дальнодействующее. Взаимодействие такого типа свойственно электрически заряженным частицам. Носителем электромагнитного взаимодействия является не имеющий заряда фотон - квант электромагнитного поля. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10 -15 - 10 -22 см и связано главным образом с распадом частиц, например, с происходящими в атомном ядре превращениями нейтрона в протон, электрон и антинейтрино. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию.

Гравитационное взаимодействие - самое слабое, не учитываемое в теории элементарных частиц, поскольку на характерных для них расстояниях порядка 10 -13 см оно дает чрезвычайно малые эффекты. Однако на ультрамалых расстояниях (порядка 10 -33 см) и при ультрабольших энергиях гравитация вновь приобретает существенное значение. Здесь начинают проявляться необычные свойства физического вакуума. Сверхтяжелые виртуальные частицы создают вокруг себя заметное гравитационное поле, которое начинает искажать геометрию пространства. В космических масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

Все четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд и необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной. Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эво­люционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

Современная физика пришла к выводу, что все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия - суперсилы. Наиболее ярким достижением стало доказательство того, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

Это предположение носит чисто теоретический характер, поскольку экспериментальным путем его проверить невозможно. Косвенно эти идеи подтверждаются астрофизическими данными, которые можно рассматривать как экспериментальный материал, накопленный Вселенной.

Открытие нейтрона и протона.

К 20-м годам XX века физики уже не сомневались в том, что атомные ядра, открытые Э. Резерфордом в 1911 г., также как и сами атомы, имеют сложную структуру. В этом их убеждали многочисленные экспериментальные факты, накопленные к этому времени: открытие радиоактивности, экспериментальное доказательство ядерной модели ядра, измерение отношения e / m для электрона, α-частицы и для так называемой H-частицы – ядра атома водорода, открытие искусственной радиоактивности и ядерных реакций, измерение зарядов атомных ядер и т. д. В настоящее время твердо установлено, что атомные ядра различных элементов состоят из двух частиц – протонов и нейтронов.

Первая из этих частиц представляет собой атом водорода, из которого удален единственный электрон. Эта частица наблюдалась уже в опытах Дж. Томсона (1907 г.), которому удалось измерить у нее отношение e / m. В 1919 году Э. Резерфорд обнаружил ядра атома водорода в продуктах расщепления ядер атомов многих элементов. Резерфорд назвал эту частицу протоном. Он высказал предположение, что протоны входят в состав всех атомных ядер.

Схема опытов Резерфорда по обнаружению протонов в продуктах расщепления ядер. К – свинцовый контейнер с радиоактивным источником α-частиц, Ф – металлическая фольга, Э – экран, покрытый сульфидом цинка, М – микроскоп.

Прибор Резерфорда состоял из вакуумированной камеры, в которой был расположен контейнер К с источником α-частиц. Окно камеры было закрыто металлической фольгой Ф, толщина которой была подобрана так, чтобы α-частицы не могли через нее проникнуть. За окном располагался экран Э, покрытый сернистым цинком. С помощью микроскопа М можно было наблюдать сцинтилляции в точках попадания на экран тяжелых заряженных частиц. При заполнении камеры азотом при низком давлении на экране возникали световые вспышки, указывающие на появление потока каких-то частиц, способных проникать через фольгу Ф, практически полностью задерживающую поток α-частиц.

Отодвигая экран Э от окна камеры, Резерфорд измерил среднюю длину свободного пробега наблюдаемых частиц в воздухе. Она оказалась приблизительно равной 28 см, что совпадало с оценкой длины пробега H-частиц, наблюдавшихся ранее Дж. Томсоном. Исследования действия на частицы, выбиваемые из ядер азота, электрических и магнитных полей показали, что эти частицы обладают положительным элементарным зарядом и их масса равна массе ядра атома водорода. Впоследствии опыт был выполнен с целым рядом других газообразных веществ. Во всех случаях было обнаружено, что из ядер этих веществ α-частицы выбивают H-частицы или протоны. По современным измерениям, положительный заряд протона в точности равен элементарному заряду e = 1,60217733·10–19 Кл, то есть равен по модулю отрицательному заряду электрона. В настоящее время равенство зарядов протона и электрона проверено с точностью 10–22. Такое совпадение зарядов двух непохожих друг на друга частиц вызывает удивление и остается одной из фундаментальных загадок современной физики.

Масса протона , по современным измерениям, равна m p = 1,67262·10–27 кг. В ядерной физике массу частицы часто выражают в атомных единицах массы (а. е. м.), равной 1/12 массы атома углерода с массовым числом 12:

Следовательно, m p = 1,007276 · а. е. м. Во многих случаях массу частицы удобно выражать в эквивалентных значениях энергии в соответствии с формулой E = mc 2 . Так как 1 эВ = 1,60218·10 –19 Дж, в энергетических единицах масса протона равна 938,272331 МэВ. Таким образом, в опыте Резерфорда было открыто явление расщепления ядер азота и других элементов при ударах быстрых α-частиц и показано, что протоны входят в состав ядер атомов. После открытия протона было высказано предположение, что ядра атомов состоят из одних протонов. Однако это предположение оказалось несостоятельным, так как отношение заряда ядра к его массе не остается постоянным для разных ядер, как это было бы, если бы в состав ядер входили одни протоны. Для более тяжелых ядер это отношение оказывается меньше, чем для легких, то есть при переходе к более тяжелым ядрам масса ядра растет быстрее, чем заряд. В 1920 г. Резерфорд высказал гипотезу о существовании в составе ядер жестко связанной компактной протон-электронной пары, представляющей собой электрически нейтральное образование – частицу с массой, приблизительно равной массе протона. Он даже придумал название этой гипотетической частице – нейтрон .

Это была очень красивая, но, как выяснилось впоследствии, ошибочная идея. Электрон не может входить в состав ядра. Квантово-механический расчет на основании соотношения неопределенностей показывает, что электрон, локализованный в ядре, то есть области размером R ≈ 10 –13 см, должен обладать колоссальной кинетической энергией, на много порядков превосходящей энергию связи ядер в расчете на одну частицу.

Идея о существовании тяжелой нейтральной частицы казалась Резерфорду настолько привлекательной, что он незамедлительно предложил группе своих учеников во главе с Дж. Чедвиком заняться поиском такой частицы. Через 12 лет в 1932 г. Чедвик экспериментально исследовал излучение, возникающее при облучении бериллия α-частицами, и обнаружил, что это излучение представляет собой поток нейтральных частиц с массой, примерно равной массе протона. Так был открыт нейтрон.

При бомбардировке бериллия α-частицами, испускаемыми радиоактивным полонием, возникает сильное проникающее излучение, способное преодолеть такую преграду, как слой свинца толщиной в 10 –20 см. Это излучение почти одновременно с Чедвиком наблюдали супруги Жолио-Кюри Ирен и Фредерик (Ирен – дочь Марии и Пьера Кюри), но они предположили, что это γ-лучи большой энергии. Они обнаружили, что если на пути излучения бериллия поставить парафиновую пластину, то ионизирующая способность этого излучения резко возрастает. Они доказали, что излучение бериллия выбивает из парафина протоны, которые в большом количестве имеются в этом водородосодержащем веществе. По длине свободного пробега протонов в воздухе они оценили энергию γ-квантов, способных при столкновении сообщить протонам необходимую скорость.

Она оказалась огромной – порядка 50 МэВ. Дж. Чедвик в 1932 г. выполнил серию экспериментов по всестороннему изучению свойств излучения, возникающего при облучении бериллия α-частицами. В своих опытах Чедвик использовал различные методы исследования ионизирующих излучений. На рис. 2 изображен счетчик Гейгера, предназначенный для регистрации заряженных частиц. Он состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой нити, идущей вдоль оси трубки (анод). Трубка заполняется инертным газом (обычно аргоном) при низком давлении. Заряженная частица, пролетая в газе, вызывает ионизацию молекул. Появившиеся в результате ионизации свободные электроны ускоряются электрическим полем между анодом и катодом до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, и через счетчик проходит короткий разрядный импульс тока. Другим важнейшим прибором для исследования частиц является так называемая камера Вильсона, в которой быстрая заряженная частица оставляет след (трек). Траекторию частицы можно наблюдать непосредственно или фотографировать.

Действие камеры Вильсона , созданной в 1912 г., основано на конденсации перенасыщенного пара на ионах, образующихся в рабочем объеме камеры вдоль траектории заряженной частицы. С помощью камеры Вильсона можно наблюдать искривление траектории заряженной частицы в электрическом и магнитном полях. Дж. Чедвик в своих опытах наблюдал в камере Вильсона треки ядер азота, испытавших столкновение с бериллиевым излучением. На основании этих опытов он сделал оценку энергии γ-кванта, способного сообщить ядрам азота наблюдаемую в эксперименте скорость. Она оказалась равной 100–150 МэВ. Такой огромной энергией не могли обладать γ-кванты, испущенные бериллием. На этом основании Чедвик заключил, что из бериллия под действием α-частиц вылетают не безмассовые γ-кванты, а достаточно тяжелые частицы.

Поскольку эти частицы обладали большой проникающей способностью и непосредственно не ионизировали газ в счетчике Гейгера, следовательно, они были электронейтральны. Так было доказано существование нейтрона – частицы, предсказанной Резерфордом более чем за 10 лет до опытов Чедвика. Нейтрон – это элементарная частица. Ее не следует представлять в виде компактной протон-электронной пары, как первоначально предполагал Резерфорд. По современным измерениям, масса нейтрона m n = 1,67493·10–27 кг = 1,008665 а. е. м. В энергетических единицах масса нейтрона равна 939,56563 МэВ. Масса нейтрона приблизительно на две электронные массы превосходит массу протона. Сразу же после открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг выдвинули гипотезу о протонно-нейтронном строении атомных ядер, которая полностью подтвердилась последующими исследованиями.

Ядро состоит из нуклонов: протонов и нейтронов.

Г. Мозли (Англия) установил, что положительный заряд ядра атома (в условных единицах) равен порядковому номеру элемента в периодической системе Менделеева. Каждый протон имеет заряд +1, поэтому заряд ядра равен числу протонов.

Масса протона, как и масса нейтрона, приблизительно в 1840 раз больше массы электрона. Протоны и нейтроны находятся в ядре, поэтому масса атома почти равна массе ядра. Масса ядра, как и масса атома, определяется суммой числа протонов и числа нейтронов. Эта сумма называется массовым числом атома. Массовое число атома (A) = Число протонов (Z) + Число нейтронов (N) A=Z+N

Протоны и нейтроны, входящие в состав любого ядра, не являются неделимыми элементарными частицами, а состоят из кварков.

Кварки, в свою очередь, взаимодействуют друг с другом, непрерывно обмениваясь глюонами - переносчиками истинно сильного взаимодействия (оно в тысячи раз сильнее того, которое действует между протонами и нейтронами в ядре). В результате протоны и нейтроны оказываются очень сильно связанными системами, которые невозможно разбить на составные части.

Энергия связи нуклонов в ядре, дефект массы.

Устойчивость атомного ядра характеризуется энергией связи св.).

Точнейшие измерения показывают, что масса покоя ядра М всегда меньше суммы масс покоя со­ставляющих ее протонов и нейтронов: М я < Zm p + Nm n .

Дефект масс - величина, на которую уменьшается масса всех нуклонов при образовании из них атомного ядра. Дефект масс равен разности между суммой масс покоя нуклонов и массой ядра М я: ∆М= - М я, где m p , m n - массы протона и нейтрона, соответственно.

Энергия связи минимальная энергия, которую необходимо затратить для полного расщепления ядра на отдельные нуклоны или энергия, выделяющаяся при слиянии свободных нуклонов в ядро. Расчетная формула энергии связи:

Е св =∆mc 2 = c 2 , где с=3·10 8 м/с – скорость света в вакууме.

Если в этой формуле массы протона, нейтрона и ядра выражены в килограммах, а скорость света - в метрах в секунду, то энергия связи Е св будет измерена в джоулях. Однако в физике атома и атомного ядра энергию ядер и элементарных частиц чаще выражают в мегаэлектрон-вольтах (МэВ): 1 МэВ = 1,6·10 - 13 Дж.

Решая соответствующие задачи, можно получить энергию связи в джоулях, а затем, если требуется, перевести ее в мегаэлектрон-вольты, разделив полученное число джоулей на 1,6·10 - 13 . Но гораздо проще получить значение энергии связи в мегаэлектрон-вольтах, если оставить массы протона, нейтрона и ядра выраженными в атомных единицах массы и умножить дефект массы ∆М не на с 2 , а на число 931 . Одной атомной единице массы соответствует энергия связи 931 МэВ. Е св =931· ∆М или Е св =931(Zm p + Nm n - М я) МэВ

Энергия связи переходит в энергию излучаемых при ядерных превращениях γ-квантов, которая равна как раз Е св , а масса которых: ∆М = Е /с 2 .

Если в результате реакции Е=∆Мc 2 > 0, то энергия выделяется, если Е=∆М c 2 < 0 - поглощается.

Для характеристики прочности ядра используется величина, которая называется удельной энергией связи ε св.

Удельная энергия связи - энергия связи, приходящаяся на один нуклон ядра, равна отношению энергии связи Е св к массовому числу ядра атома А: ε св =Е св /А, Удельная энергия связи определяется экспериментально.

Ядерные реакции - процессы, происходящие при столкновении ядер или элементарных частиц с другими ядрами, в результате которых изменяются квантовое состояние и нуклонный состав ис­ходного ядра, а также появляются новые частицы среди продуктов реакции.

При этом возможны реакции деления, когда ядро одного атома в результате бомбардировки делится на два ядра разных атомов. При реакциях синтеза происходит превращение легких ядер в более тяжелые.

ВНИМАНИЕ: Разница между химическими и ядерными реакциями состоит в том, что в химических реакциях общее число атомов каждого определенного элемента, а также атомы, составляющие определенные вещества, остаются неизменными. В ядерных реакциях изменяются и атомы, и элементы.

Изотопы.

Изотопы - это разновидности атомов одного и того же химического элемента, атомные ядра которых имеют одинаковое число протонов Z и различное число нейтронов n. Изотопы занимают одно и то же место в периодической системе элементов, откуда и произошло их название. По своим ядерным свойствам изотопы, как правило, существенно отличаются. Химические (и почти в той же мере физические) свойства изотопов одинаковы. Это объясняется тем, что химические свойства элемента опреде­ляются зарядом ядра, поскольку именно он вли­яет на структуру электронной оболочки атома.

Исключением являются изотопы легких элементов. Изотопы водорода 1 Н - протий, 2 Н - дейтерий, 3 Н - тритий столь сильно отличаются по массе, что и их физические и химические свойства различны. Дейтерий стабилен (т. е. не радиоактивен) и входит в качестве небольшой примеси (1: 4500) в обычный водород. При соединении дейтерия с кис­лородом образуется тяжелая вода. Она при нормальном атмосферном давлении кипит при 101,2°С и замерзает при 3,8°С. Тритий β-радиоактивен с пе­риодом полураспада около 12 лет.

У всех химических элементов имеются изотопы. У некоторых элементов имеются только нестабильные (радиоактивные) изотопы. Для всех элементов искусственно получены радиоактивные изотопы. В атомной индустрии все воз­растающую ценность для человечества представляют радиоактивные изотопы.

1 МэВ = 1,6·10 - 13 Дж; 1 а.е.м.= 1,66∙10 -27 кг.

Открытие нейтрона дало толчок к пониманию того, как устроены ядра атомов.

В том же 1932 г., когда был открыт нейтрон, советский физик Дмитрий Дмитриевич Иваненко и немецкий физик Вернер Гейзенберг предложили протонно-нейтронную модель строения ядер, справедливость которой была впоследствии подтверждена экспериментально.

Протоны и нейтроны называются нуклонами (от лат. nucleus - ядро). Используя этот термин, можно сказать, что атомные ядра состоят из нуклонов.

  • Общее число нуклонов в ядре называется массовым числом и обозначается буквой А

Так, например, для азота массовое число А = 14, для железа A = 56, для урана A = 235.

Понятно, что массовое число А численно равно массе ядра m, выраженной в атомных единицах массы и округлённой до целых чисел (поскольку масса каждого нуклона примерно равна 1 а. е. м.). Например, для азота m ≈ 14 а. е. м., для железа m ≈ 56 а. е. м. и т. д.

  • Число протонов в ядре называется зарядовым числом и обозначается Z

Например, для азота зарядовое число Z = 7, для железа Z = 26, для урана Z = 92 и т. д.

Заряд каждого протона равен элементарному электрическому заряду. Поэтому зарядовое число Z численно равно заряду ядра, выраженному в элементарных электрических зарядах. Для каждого химического элемента зарядовое число равно атомному (порядковому) номеру в таблице Д. И. Менделеева.

Ядро любого химического элемента в общем виде обозначается так: (под X подразумевается символ химического элемента).

Число нейтронов в ядре обычно обозначают буквой N. Поскольку массовое число А представляет собой общее число протонов и нейтронов в ядре, то можно записать: А = Z + N.

На основе протонно-нейтронной модели строения атомных ядер было дано объяснение некоторым экспериментальным фактам, открытым в первые два десятилетия XX в.

Так, в ходе изучения свойств радиоактивных элементов было обнаружено, что у одного и того же химического элемента встречаются атомы с различными по массе ядрами.

Одинаковый заряд ядер свидетельствует о том, что они имеют один и тот же порядковый номер в таблице Д. И. Менделеева, т. е. занимают в таблице одну и ту же клетку, одно и то же место. Отсюда и произошло название всех разновидностей одного химического элемента: изотопы (от греч. слов isos - одинаковый и topos - место).

  • Изотопы - это разновидности данного химического элемента, различающиеся по массе атомных ядер

Благодаря созданию протонно-нейтронной модели ядра (т. е. примерно через два десятилетия после открытия изотопов), удалось объяснить, почему атомные ядра с одним и тем же зарядом обладают разными массами. Очевидно, ядра изотопов содержат одинаковое число протонов, но различное число нейтронов.

Так, например, существует три изотопа водорода: (протий), . (дейтерий) и (тритий). Ядро изотопа вообще не имеет нейтронов - оно представляет собой один протон. В состав ядра дейтерия входят две частицы: протон и нейтрон. Ядро трития состоит из трёх частиц: одного протона и двух нейтронов.

Гипотеза о том, что атомные ядра состоят из протонов и нейтронов, подтверждалась многими экспериментальными фактами.

Но возникал вопрос: почему ядра не распадаются на отдельные нуклоны под действием сил электростатического отталкивания между положительно заряженными протонами?

Расчёты показывают, что нуклоны не могут удерживаться вместе за счёт сил притяжения гравитационной или магнитной природы, поскольку эти силы существенно меньше электростатических.

В поисках ответа на вопрос об устойчивости атомных ядер учёные предположили, что между всеми нуклонами в ядрах действуют какие-то особые силы притяжения, которые значительно превосходят электростатические силы отталкивания между протонами. Эти силы назвали ядерными.

Гипотеза о существовании ядерных сил оказалась правильной. Выяснилось также, что ядерные силы являются короткодействующими: на расстоянии 10 -15 м они примерно в 100 раз больше сил электростатического взаимодействия, но уже на расстоянии 10 -14 м они оказываются ничтожно малыми. Другими словами, ядерные силы действуют на расстояниях, сравнимых с размерами самих ядер.

Вопросы

  1. Как называются протоны и нейтроны вместе?
  2. Что называется массовым числом? Что можно сказать о числовом значении массы атома (в а. е. м.) и его массовом числе?
  3. Что можно сказать о зарядовом числе, заряде ядра (выраженном в элементарных электрических зарядах) и порядковом номере в таблице Д. И. Менделеева для любого химического элемента?
  4. Как связаны между собой массовое число, зарядовое число и число нейтронов в ядре?
  5. Как в рамках протонно-нейтронной модели ядра объяснить существование ядер с одинаковыми зарядами и различными массами?
  6. Какой вопрос возникал в связи с гипотезой о том, что ядра атомов состоят из протонов и нейтронов? Какое предположение пришлось сделать учёным для ответа на этот вопрос?
  7. Как называются силы притяжения между нуклонами в ядре и каковы их характерные особенности?