Вычисление тройного интеграла в цилиндрических координатах примеры. Тройные интегралы. Вычисление объема тела.Тройной интеграл в цилиндрических координатах. II Тройной интеграл в цилиндрических координатах

Процедура вычисления тройного интеграла аналогична соответствующей операции для двойного интеграла. Для ее описания введем понятие правильной трехмерной области:

Определение 9.1. Трехмерная область V, ограниченная замкнутой поверхностью S, называется правильной, если:

  1. любая прямая, параллельная оси Оz и проведенная через внутреннюю точку области, пересекает S в двух точках;
  2. вся область V проектируется на плоскость Оху в правильную двумерную область D;
  3. любая часть области V, отсеченная от нее плоскостью, параллельной какой-либо из координатных плоскостей, обладает свойствами 1) и 2).

Рассмотрим правильную область V, ограниченную снизу и сверху поверхностями z=χ(x,y) и z=ψ(x,y) и проектирующуюся на плоскость Оху в правильную область D, внутри которой х изменяется в пределах от а до b, ограниченную кривыми y=φ1(x) и y=φ2(x) (рис.1). Зададим в области V непрерывную функцию f(x, y, z).

Определение 9.2. Назовем трехкратным интегралом от функции f(x, y, z) по области V выражение вида:

Трехкратный интеграл обладает теми же свойствами, что и двукратный. Перечислим их без доказательства, так как они доказываются аналогично случаю двукратного интеграла.

Вычисление тройного интеграла.

Теорема 9.1. Тройной интеграл от функции f(x,y,z) по правильной области V равен трехкратному интегралу по той же области:

. (9.3)

Доказательство.

Разобьем область V плоскостями, параллельными координатным плоскостям, на п правильных областей . Тогда из свойства 1 следует, что

где – трехкратный интеграл от функции f(x,y,z) по области .

Используя формулу (9.2), предыдущее равенство можно переписать в виде:

Из условия непрерывности функции f(x,y,z) следует, что предел интегральной суммы, стоящей в правой части этого равенства, существует и равен тройному интегралу . Тогда, переходя к пределу при , получим:

что и требовалось доказать.

Замечание.

Аналогично случаю двойного интеграла можно доказать, что изменение порядка интегрирования не меняет значения трехкратного интеграла.

Пример. Вычислим интеграл где V - треугольная пирамида с вершинами в точках (0, 0, 0), (1, 0, 0), (0, 1, 0) и (0, 0, 1). Ее проекцией на плоскость Оху является треугольник с вершинами (0, 0), (1, 0) и (0, 1). Снизу область ограничена плоскостью z = 0, а сверху - плоскостью x + y + z = 1. Перейдем к трехкратному интегралу:

Множители, не зависящие от переменной интегриро-вания, можно вынести за знак соответствующего интеграла:

Криволинейные системы координат в трехмерном пространстве.

  1. Цилиндрическая система координат.

Цилиндрические координаты точки Р(ρ,φ,z) - это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.2).

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

x = ρ cosφ, y = ρ sinφ, z = z. (9.4)

  1. Сферическая система координат.

В сферических координатах положение точки в пространстве определяется линейной координатой ρ - расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ - полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ - углом между положительной полуосью оси Оz и отрезком OP (рис.3). При этом

Зададим формулы перехода от сферических координат к декартовым:

x = ρ sinθ cosφ, y = ρ sinθ sinφ, z = ρ cosθ. (9.5)

Якобиан и его геометрический смысл.

Рассмотрим общий случай замены переменных в двойном интеграле. Пусть в плоскости Оху дана область D, ограниченная линией L. Предположим, что х и у являются однозначными и непрерывно дифференцируемыми функциями новых переменных u и v:

x = φ(u, v), y = ψ(u, v). (9.6)

Рассмотрим прямоугольную систему координат Оuv, точка Р΄(u, v) которой соответствует точке Р(х, у) из области D. Все такие точки образуют в плоскости Оuv область D΄, ограниченную линией L΄. Можно сказать, что формулы (9.6) устанавливают взаимно однозначное соответствие между точками областей D и D΄. При этом линиям u = const и

v = const в плоскости Оuv будут соответствовать некоторые линии в плоскости Оху.

Рассмотрим в плоскости Оuv прямоугольную площадку ΔS΄, ограниченную прямыми u = const, u+Δu = const, v = const и v+Δv = const. Ей будет соответствовать криволинейная площадка ΔS в плоскости Оху (рис.4). Площади рассматриваемых площадок тоже будем обозначать ΔS΄ и ΔS. При этом ΔS΄ = Δu Δv. Найдем площадь ΔS. Обозначим вершины этого криволинейного четырехугольника Р1, Р2, Р3, Р4, где

P1(x1, y1), x1 = φ(u, v), y1 = ψ(u, v);

P2(x2, y2), x2 = φ(u+Δu, v), y2 = ψ(u+Δu, v);

P3(x3, y3), x3 = φ(u+Δu, v+Δv), y3 = ψ(u+Δu, v+Δv);

P4(x4, y4), x4 = φ(u, v+Δv), y4 = ψ(u, v+Δv).

Заменим малые приращения Δu и Δv соответствующими дифференциалами. Тогда

При этом четырехугольник Р1 Р2 Р3 Р4 можно считать параллелограммом и определить его площадь по формуле из аналитической геометрии:

(9.7)

Определение 9.3. Определитель называется функциональным определителем или якобианом функций φ(х, у) и ψ(х, у).

Переходя к пределу при в равенстве (9.7), получим геометрический смысл якобиана:

то есть модуль якобиана есть предел отношения площадей бесконечно малых площадок ΔS и ΔS΄.

Замечание. Аналогичным образом можно определить понятие якобиана и его геометрический смысл для п-мерного пространства: если x1 = φ1(u1, u2,…,un), x2 = φ2(u1, u2,…,un),…, xn = φ(u1, u2,…, un), то

(9.8)

При этом модуль якобиана дает предел отношения «объемов» малых областей пространств х1, х2,…, хп и u1, u2,…, un .

Замена переменных в кратных интегралах.

Исследуем общий случай замены переменных на примере двойного интеграла.

Пусть в области D задана непрерывная функция z = f(x,y), каждому значению которой соответствует то же самое значение функции z = F(u, v) в области D΄, где

F(u, v) = f(φ(u, v), ψ(u, v)). (9.9)

Рассмотрим интегральную сумму

где интегральная сумма справа берется по области D΄. Переходя к пределу при , получим формулу преобразования координат в двойном интеграле.

Пусть дано материальное тело, представляющее собой пространственную область П, заполненную массой. Требуется найти массу m этого тела при условии, что в каждой точке Р € П известна плотность распределения масс. Разобьем область П на неперекрывающиеся кубируемые (т. е. имеющие объем) части с объемами соответственно. В каждой из частичных областей ft* выберем произвольнуюточкуР*. Примем приближенно, что в пределах частичной области ft* плотность постоянна и равна /*(Р*). Тогда масса Атк этой части тела выразится приближенным равенством Атпк а масса всего тела будет приближенно равна Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пусть d - наибольший из диаметров частичных областей Если при d -* 0 сумма (1) имеет конечный предел, не зависящий ни от способа разбиения области ft на частичные подобласти, ни от выбора точек Р* € ft*, то этот предел принимается за массу m заданного тела, Пусть в замкнутой кубируемой области ft определена ограниченная функция Разобьем ft на п непересекающихся кубируемых частей а их объемы обозначим через соответственно. В каждой частичной подобласти П* произвольным образом выбираем точку Рк(хк, ук, zk) и составляем интегральную сумму Пусть d - наибольший из диаметров частичных областей Определение. Если при d О интегральные суммы а имеют предел, не зависящий ни от способа разбиения области Л на частичные подобласти П*, ни от выбора точек Рк € П*, то этот предел называется тройнич интегралам от функции f(x} у, z) по области Q и обозначается символом Теорема 6. Если функция f(x, у, z) непрерывна в замкнутой кубируемой области П, то она интегрируема в этой области. Свойства тройных интегралов Свойства тройных интегралов аналогичны свойствам двойных интегралоа Перечислим основные из них. Пусть функции интегрируемы в кубируемой области Л. 1. Линейность. При этом функция называется интегрируемой в области Q. Таким образом, по определению имеем Возвращаясь к задаче о вычислении массы тела, замечаем, что предел (2) есть тройной интеграл огт фуншни р(Р) по области П. Значит, Здесь dx dy dz - элемент объема dv в прямоугольных координатах. где а и (3 - произвольные вещественные постоянные. всюду в области П,то 3. Если /(Р) = 1 в области П, то п где V - объем области Q. Если функция /(Р) непрерывна в замкнутой кубируемой области ft и М и т - ее наибольшее и наименьшее значения в ft, то где V - объем области ft. 5. Аддитивность. Если область ft разбита на кубируемые области без общих внутренних точек и f{P) интегрируема в области ft, то f(P) интегрируема на каждой из областей ft| и ft2, причем 6. Теорема о среднем значении. Теореме 7 (о среднем значении). Если функция f(P) непрерывна в замкнутой кубируемой области ft, то найдется тонка Рс € ft, такая, что будет справедлива формула где V - объем области ft (напомним, что область - связное множество). § 7. Вычисление тройного интеграла в декартовых координатах Как и при вычислении двойных интегралов, дело сводится к вычислению повторных интегралов. Предположим, что функция непрерывна в некоторой области ft. 1-й случай. Область ft представляет собой прямоугольный параллелепипед проектирующийся на плоскость yOz в прямоугольник i2; Тогда получим Заменяя двойной интеграл через повторный, окончательно получим Таким образом, в случае, когда область П - прямоугольный параллелепипед, мы свели вычисление тройного интеграла к последовательному вычислению трех обыкновенных интегралов. Формулу (2) можно переписать в виде где прямоугольник есть ортогональная проекция параллелепипеда П на плоскость хОу. 2-й случай. Рассмотрим теперь область Q такую, что ограничивающая ее поверхность 5 пересекается любой прямой, параллельной оси Oz, не более чем в двух точках или по целому отрезку (рис.22). Пусть z = tpi(x,y) уравнение поверхности 5, ограничивающей область П снизу, а поверхность S2, ограничивающая область П сверху, имеет уравнение z = у). Пусть обе поверхности S\ и S2 проектируются на одну и ту же область плоскости хОу. Обозначим ее через D, а ограничивающую ее кривую через L. Остальная часть границы 5 тела Q лежит на цилиндрической поверхности с образующими, параллельными оси Oz, и с кривой L в роли направляющей. Тогда по аналогии с формулой (3) получим Если область D плоскости хОу представляет собой криволинейную трапецию, ограниченную двумя кривыми, то двойной интеграл в формуле (4) можно свести к повторному, и мы получим окончательно Эта формула является обобщением формулы (2). Рис-23 Пример. Вычислить объем тетраэдра, ограниченного плоскостями Проекцией тетраэдра на плоскость хОу служит треугольник, образованный прямыми так что х изменяется от 0 до 6, а при фиксированном х (0 ^ х ^ 6) у изменяется от 0 до 3 - | (рис. 23). Если же фиксированы и х, и у, то точка может перемещаться по вертикали от плоскости до плоскости меняется в пределах от 0 до 6 - х - 2у. По формуле получаем §8. Вычисление тройного интеграла в цилиндрических и сферических координатах Вопрос о замене переменных в тройном интеграле решается таким же путем, как и в случае двойного интеграла. Пусть функция /(ж, у, z) непрерывна в замкнутой кубируемой области ft, а функции непрерывны вместе со своими частными производными первого порядка в замкнутой кубируемой области ft*. Предположим, что функции (1) устанавливают взаимнооднозначное соответствие между всеми точками rj, {) области ft*, с одной стороны, и всеми точками (ж, у, z) области ft - с другой. Тогда справедлива формула замены переменных в тройном интеграле - где - якобиан системы функций (1). На практике при вычислении тройных интеграловчасто пользуются заменой прямоугольных координат цилиндрическими и сферическими координатами. 8.1. Тройной интеграл в цилиндрических координатах В цилиндрической системе координат положение точки Р в пространстве определяется тремя числами р, где р и (р - полярные координаты проекции Р1 точки Р на плоскость хОу, a z - аппликата точки Р (рис.24). Числа называются цилиндрическими координатами точии Р. Ясно, что В системе цилиндрических координат координатные поверхности Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах соответственно описывают: круговой цилиндр, ось которого совпадает с осью Oz, полуплоскость, примыкающую к оси Oz, и плоскость, параллельную плоскости хОу. Цилиндрические координаты связаны с декартовыми следующими формулами (см. рис. 24). Для системы (3), отображающей область ft на область имеем и формула (2) перехода от тройного интеграла в прямоугольных координатах к интегралу в цилиндрических координатах принимает вид (4) Выражение называется элементом объема в цилиндрических координатах. Это выражение для элемента объема может быть получено и из геометрических соображений. Разобьем область П на элементарные подобласти координатными поверхностями и вычислим объемы полученных криволинейных призм (рис. 25). Видно, что Отбрасывая бесконечно малую величину более высокого порядка, получаем Это позволяет принять за элемент объема в цилиндрических координатах следующую величину Пример 1. Найти объем тела, ограниченного поверхностями 4 В цилиндрических координатах заданные поверхности будут иметь уравнения (см. формулы (3)). Эти поверхности пересекаются по линии г, которая описывается системой уравнений (цилиндр), (плоскость), рис 26 а ее проекция на плоскость хОу системой Таким образом, Искомый объем вычисляется по формуле (4), в которой. Тройной интеграл в сферических координатах В сферической системе координат положение точки Р(х, у, z) в пространстве определяется тремя числами, где г - расстояние от начала координат до точки угол между осью Ох и проекцией радиуса-вектора ОР точки Р на плоскость хОу, а в - угол между осью Oz и радиусом-вектором ОР точки Р, отсчитываемый от оси Oz (рис. 27). Ясно, что. Координатные поверхности в этой системе координат: г = const - сферы с центром в начале координат; ip = constполуплоскости, исходящие из оси Oz; в = const - круговые конусы с осью Oz. Рис. 27 Из рисунка видно, что сферические и декартовы координаты связаны следующими соотношениями Вычислим якобиан функций (5). Имеем Следовательно, и формула (2) принимает вид Элемент объема в сферических координатах - Выражение для элемента объема можно получить и из геометрических соображений. Рассмотрим элементарную область в пространстве, ограниченную сферами радиусов г и г + dr, конусами в и в + d$ и полуплоскостями Приближенно эту область можно считать прямоугольным параллелепипедом с измерениями. Тогда Тройной интеграл Свойства тройных интегралов Вычисление тройного интеграла в декартовых координатах Вычисление тройного интеграла в цилиндрических и сферических координатах Пример 2. Найти объем выпуклого тела Q, вырезаемого из конуса концентрическими сферами -4 Переходим к сферической системе координат Из первых двух уравнений видно, что. Из третьего уравнения находим пределы изменен угла 9: откуда

Скачать с Depositfiles

Тройной интеграл.

Контрольные вопросы.

    Тройной интеграл, его свойства.

    Замена переменных в тройном интеграле. Вычисление тройного интеграла в цилиндрических координатах.

    Вычисление тройного интеграла в сферических координатах.

Пусть функция u = f (x,y ,z ) определена в ограниченной замкнутой области V пространства R 3 . Разобьём область V произвольным образом наn элементарных замкнутых областей V 1 , … , V n , имеющих объемы  V 1 , …, V n соответственно. Обозначим d – наибольший из диаметров областей V 1 , … , V n . В каждой области V k выберем произвольную точку P k (x k , y k , z k )и составим интегральную сумму функции f (x , y , z )

S =

Определение. Тройным интегралом от функции f (x , y , z ) по области V называется предел интегральной суммы
, если он существует.

Таким образом,



(1)

Замечание. Интегральная сумма S зависит от способа разбиения области V и выбора точек P k (k =1, …, n ). Однако, если существует предел, то он не зависит от способа разбиения области V и выбора точек P k . Если сравнить определения двойного и тройного интегралов, то легко увидеть в них полную аналогию.

Достаточное условие существования тройного интеграла. Тройной интеграл (13) существует, если функция f (x , y , z ) ограничена в V и непрерывна в V , за исключением конечного числа кусочно-гладких поверхностей, расположенных в V .

Некоторые свойства тройного интеграла.

1) Если С – числовая константа, то


3) Аддитивностьпо области. Если область V разбита на области V 1 и V 2 , то

4) Объем тела V равен


(2 )

Вычисление тройного интеграла в декартовых координатах.

Пусть D проекция тела V на плоскость xOy , поверхности z =φ 1 (x , y ), z =φ 2 (x , y ) ограничивают тело V снизу и сверху соответственно. Это значит, что

V = {(x , y , z ): (x , y )D , φ 1 (x , y ) ≤ z ≤ φ 2 (x , y )}.

Такое тело назовем z -цилиндрическим. Тройной интеграл (1) по z -цилиндрическому телу V вычисляется переходом к повторному интегралу, состоящему из двойного и определенного интегралов:




(3 )

В этом повторном интеграле сначала вычисляется внутренний определенный интеграл по переменной z , при этом x , y считаются постоянными. Затем вычисляется двойной интеграл от полученной функции по области D .

Если V x- цилиндрическое или y- цилиндрическое тело, то верны соответственно формулы



В первой формуле D проекция тела V на координатную плоскость yOz , а во второй  на плоскость xOz

Примеры. 1) Вычислитьобъем тела V , ограниченного поверхностями z = 0, x 2 + y 2 = 4, z = x 2 + y 2 .

Решение. Вычислим объём при помощи тройного интеграла по формуле (2)

Перейдем к повторному интегралу по формуле (3).

Пусть D  круг x 2 + y 2 4, φ 1 (x , y ) = 0, φ 2 (x , y )= x 2 + y 2 . Тогда по формуле (3) получим


Для вычисления этого интеграла перейдем к полярным координатам. При этом круг D преобразуется во множество

D r = { (r , φ ) : 0 ≤ φ < 2 π , 0 ≤ r ≤ 2} .



2) Тело V ограничено поверхностямиz=y , z= –y , x= 0 , x= 2, y= 1. Вычислить

Плоскости z = y , z = –y ограничиваюттелосоответственно снизу и сверху, плоскости x= 0 , x= 2 ограничивают тело соответственно сзади и спереди, а плоскость y= 1 ограничиваетсправа. V – z- цилиндрическое тело, его проекцией D на плоскость хОу является прямоугольник ОАВС . Положим φ 1 (x , y ) = –y

Пусть имеем две прямоугольные системы координат в пространстве и
, и систему функций

(1)

которые устанавливают взаимно-однозначное соответствие между точками некоторых областей
и
в этих системах координат. Предположим, что функции системы (1) имеют в
непрерывные частные производные. Определитель, составленный из этих частных производных

,

называют якобианом (или определителем Якоби) системы функций (1). Мы будем предполагать, что
в
.

В сделанных выше предположениях имеет место следующая общая формула замены переменных в тройном интеграле:

Как и в случае двойного интеграла, взаимная однозначность системы (1) и условие
могут нарушаться в отдельных точках, на отдельных линиях и на отдельных поверхностях.

Система функций (1) каждой точке
ставит в соответствие единственную точку
. Эти три числа
называют криволинейными координатами точки. Точки пространства
, для которых одна из этих координат сохраняет постоянное значение, образуют т.н. координатную поверхность.

II Тройной интеграл в цилиндрических координатах

Цилиндрическая система координат (ЦСК) определяется плоскостью
, в которой задана полярная система координат и осью
, перпендикулярной этой плоскости. Цилиндрическими координатами точки
, где
– полярные координаты точки– проекции точкина плоскость
, а– это координаты проекции точкина ось
или
.

В плоскости
введем обычным образом декартовы координаты, ось аппликат направим по оси
ЦСК. Теперь нетрудно получить формулы, связывающие цилиндрические координаты с декартовыми:

(3)

Эти формулы отображают областьна все пространство
.

Координатными поверхностями в рассматриваемом случае будут:

1)
– цилиндрические поверхности с образующими, парал-лельными оси
, направляющими которых служат окружности в плоскости
, с центром в точке;

2)

;

3)
– плоскости, параллельные плоскости
.

Якобиан системы (3):

.

Общая формула в случае ЦСК принимает вид:

Замечание 1 . Переход к цилиндрическим координатам рекомендуется в случае, когда область интегрирования – это круговые цилиндр или конус, или параболоид вращения (или их части), причем ось этого тела совпадает с осью аппликат
.

Замечание 2. Цилиндрические координаты можно обобщить так же, как и полярные координаты на плоскости.

Пример 1. Вычислить тройной интеграл от функции

по области
, представляющей собой внутреннюю часть цилиндра
, ограниченную конусом
и параболоидом
.

Решение. Эту область мы уже рассматривали в §2, пример 6, и получили стандартную запись в ДПСК. Однако, вычисление интеграла в этой области затруднительно. Перейдем в ЦСК:

.

Проекция
тела
на плоскость
– это круг
. Следовательно, координатаизменяется от 0 до
, а– от0 до R . Через произвольную точку
проведем прямую, параллельную оси
. Прямая войдет в
на конусе, а выйдет на параболоиде. Но конус
имеет в ЦСК уравнение
, а параболоид
– уравнение
. Итак, имеем

III Тройной интеграл в сферических координатах

Сферическая система координат (ССК) определяется плоскостью
, в которой задана ПСК, и осью
, перпендикулярной плоскости
.

Сферическими координатами точки пространства называют тройку чисел
, где– полярный угол проекции точки на плоскость
,– угол между осью
и вектором
и
.

В плоскости
введем декартовы координатные оси
и
обычным образом, а ось аппликат совместим с осью
. Формулы, связывающие сферические координаты с декартовыми таковы:

(4)

Эти формулы отображают область на всё пространство
.

Якобиан системы функций (4):

.

Координатные поверхности составляют три семейства:

1)
– концентрические сферы с центром в начале координат;

2)
– полуплоскости, проходящие через ось
;

3)
– круговые конусы с вершиной в начале координат, осью которых служит ось
.

Формула перехода в ССК в тройном интеграле:

Замечание 3. Переход в ССК рекомендуется, когда область интегрирования – это шар или его часть. При этом уравнение сферы
переходит в. Как и ЦСК, рассмотренная ранее, ССК «привязана» к оси
. Если центр сферы смещён на радиус вдоль координатной оси, то наиболее простое сферическое уравнение получим при смещении вдоль оси
:

Замечание 4. Возможно обобщение ССК:

с якобианом
. Эта система функций переведет эллипсоид

в «параллелепипед»

Пример 2. Найти среднее расстояние точек шара радиуса от его центра.

Решение. Напомним, что среднее значение функции
в области
– это тройной интеграл от функции по области деленный на объём области. В нашем случае

Итак, имеем

Примеры решений произвольных тройных интегралов.
Физические приложения тройного интеграла

Во 2-й части урока мы отработаем технику решения произвольных тройных интегралов , у которых подынтегральная функция трёх переменных в общем случае отлична от константы и непрерывна в области ; а также познакомимся с физическими приложениями тройного интеграла

Вновь прибывшим посетителям рекомендую начать с 1-й части, где мы рассмотрели основные понятия и задачу нахождения объема тела с помощью тройного интеграла . Остальным же предлагаю немного повторить производные функции трёх переменных , поскольку в примерах данной статьи мы будем использовать обратную операцию – частное интегрирование функции .

Кроме того, есть ещё один немаловажный момент: если у Вас неважное самочувствие, то прочтение этой странички по возможности лучше отложить. И дело не только в том, что сейчас возрастёт сложность вычислений – у большинства тройных интегралов нет надёжных способов ручной проверки, поэтому к их решению крайне нежелательно приступать в утомлённом состоянии. При пониженном тонусе целесообразно порешать что-нибудь попроще либо просто отдохнуть (я терпелив, подожду =)), чтобы в другой раз со свежей головой продолжить расправу над тройными интегралами:

Пример 13

Вычислить тройной интеграл

На практике тело также обозначают буквой , но это не очень хороший вариант, ввиду того, «вэ» «зарезервировано» под обозначение объёма.

Сразу скажу, чего делать НЕ НАДО. Не нужно пользоваться свойствами линейности и представлять интеграл в виде . Хотя если очень хочется, то можно. В конце концов, есть и небольшой плюс – запись будет хоть и длинной, но зато менее загромождённой. Но такой подход всё-таки не стандартен.

В алгоритме решения новизны будет немного. Сначала нужно разобраться с областью интегрирования. Проекция тела на плоскость представляет собой до боли знакомый треугольник:

Сверху тело ограничено плоскостью , которая проходит через начало координат. Предварительно, к слову, нужно обязательно проверить (мысленно либо на черновике) , не «срезает» ли эта плоскость часть треугольника. Для этого находим её линию пересечения с координатной плоскостью , т.е. решаем простейшую систему: – нет, данная прямая (на чертеже отсутствует) «проходит мимо», и проекция тела на плоскость действительно представляет собой треугольник.

Не сложен здесь и пространственный чертёж:

В действительности можно было ограничиться только им, поскольку проекция очень простая. …Ну, или только чертежом проекции, так как тело тоже простое =) Однако совсем ничего не чертить, напоминаю – плохой выбор.

Ну и, само собой, не могу не порадовать вас заключительной задачей:

Пример 19

Найти центр тяжести однородного тела, ограниченного поверхностями , . Выполнить чертежи данного тела и его проекции на плоскость .

Решение : искомое тело ограничено координатными плоскостями и плоскостью , которую в целях последующего построения удобно представить в отрезках : . Выберем «а» за единицу масштаба и выполним трёхмерный чертёж:

На чертеже уже поставлена готовая точка центра тяжести, однако, пока мы её не знаем.

Проекция тела на плоскость очевидна, но, тем не менее, напомню, как её найти аналитически – ведь такие простые случаи встречаются далеко не всегда. Чтобы найти прямую, по которой пересекаются плоскости нужно решить систему:

Подставляем значение в 1-е уравнение: и получаем уравнение «плоской» прямой :

Координаты центра тяжести тела вычислим по формулам
, где – объём тела.