Решение уравнений косинусы синусы. Основные методы решения тригонометрических уравнений. Урок и презентация на тему: "Решение простейших тригонометрических уравнений"

Требует знания основных формул тригонометрии - сумму квадратов синуса и косинуса, выражение тангенса через синус и косинус и другие. Для тех, кто их забыл или не знает рекомендуем прочитать статью " ".
Итак, основные тригонометрические формулы мы знаем, пришло время использовать их на практике. Решение тригонометрических уравнений при правильном подходе – довольно увлекательное занятие, как, например, собрать кубик Рубика.

Исходя из самого названия видно, что тригонометрическое уравнение – это уравнение, в котором неизвестное находится под знаком тригонометрической функции.
Существуют так называемые простейшие тригонометрические уравнения. Вот как они выглядят: sinх = а, cos x = a, tg x = a. Рассмотрим, как решить такие тригонометрические уравнения , для наглядности будем использовать уже знакомый тригонометрический круг.

sinх = а

cos x = a

tg x = a

cot x = a

Любое тригонометрическое уравнение решается в два этапа: приводим уравнение к простейшему виду и далее решаем его, как простейшее тригонометрическое уравнение.
Существует 7 основных методов, с помощью которых решаются тригонометрические уравнения.

  1. Метод замены переменной и подстановки

  2. Решить уравнение 2cos 2 (x + /6) – 3sin( /3 – x) +1 = 0

    Используя формулы приведения получим:

    2cos 2 (x + /6) – 3cos(x + /6) +1 = 0

    Заменим cos(x + /6) на y для упрощения и получаем обычное квадратное уравнение:

    2y 2 – 3y + 1 + 0

    Корни которого y 1 = 1, y 2 = 1/2

    Теперь идем в обратном порядке

    Подставляем найденные значения y и получаем два варианта ответа:

  3. Решение тригонометрических уравнений через разложение на множители

  4. Как решить уравнение sin x + cos x = 1 ?

    Перенесем все влево, чтобы справа остался 0:

    sin x + cos x – 1 = 0

    Воспользуемся вышерассмотренными тождествами для упрощения уравнения:

    sin x - 2 sin 2 (x/2) = 0

    Делаем разложение на множители:

    2sin(x/2) * cos(x/2) - 2 sin 2 (x/2) = 0

    2sin(x/2) * = 0

    Получаем два уравнения

  5. Приведение к однородному уравнению

  6. Уравнение является однородным относительно синуса и косинуса, если все его члены относительно синуса и косинуса одной и той же степени одного и того же угла. Для решения однородного уравнения, поступают следующим образом:

    а) переносят все его члены в левую часть;

    б) выносят все общие множители за скобки;

    в) приравнивают все множители и скобки к 0;

    г) в скобках получено однородное уравнение меньшей степени, его в свою очередь делят на синус или косинус в старшей степени;

    д) решают полученное уравнение относительно tg.

    Решить уравнение 3sin 2 x + 4 sin x cos x + 5 cos 2 x = 2

    Воспользуемся формулой sin 2 x + cos 2 x = 1 и избавимся от открытой двойки справа:

    3sin 2 x + 4 sin x cos x + 5 cos x = 2sin 2 x + 2cos 2 x

    sin 2 x + 4 sin x cos x + 3 cos 2 x = 0

    Делим на cos x:

    tg 2 x + 4 tg x + 3 = 0

    Заменяем tg x на y и получаем квадратное уравнение:

    y 2 + 4y +3 = 0, корни которого y 1 =1, y 2 = 3

    Отсюда находим два решения исходного уравнения:

    x 2 = arctg 3 + k

  7. Решение уравнений, через переход к половинному углу

  8. Решить уравнение 3sin x – 5cos x = 7

    Переходим к x/2:

    6sin(x/2) * cos(x/2) – 5cos 2 (x/2) + 5sin 2 (x/2) = 7sin 2 (x/2) + 7cos 2 (x/2)

    Пререносим все влево:

    2sin 2 (x/2) – 6sin(x/2) * cos(x/2) + 12cos 2 (x/2) = 0

    Делим на cos(x/2):

    tg 2 (x/2) – 3tg(x/2) + 6 = 0

  9. Введение вспомогательного угла

  10. Для рассмотрения возьмем уравнение вида: a sin x + b cos x = c ,

    где a, b, c – некоторые произвольные коэффициенты, а x – неизвестное.

    Обе части уравнения разделим на :

    Теперь коэффициенты уравнения согласно тригонометрическим формулам обладают свойствами sin и cos, а именно: их модуль не более 1 и сумма квадратов = 1. Обозначим их соответственно как cos и sin , где – это и есть так называемый вспомогательный угол. Тогда уравнение примет вид:

    cos * sin x + sin * cos x = С

    или sin(x + ) = C

    Решением этого простейшего тригонометрического уравнения будет

    х = (-1) k * arcsin С - + k, где

    Следует отметить, что обозначения cos и sin взаимозаменяемые.

    Решить уравнение sin 3x – cos 3x = 1

    В этом уравнении коэффициенты:

    а = , b = -1, поэтому делим обе части на = 2

Простейшие тригонометрические уравнения решаются, как правило, по формулам. Напомню, что простейшими называются вот такие тригонометрические уравнения:

sinx = а

cosx = а

tgx = а

ctgx = а

х - угол, который нужно найти,
а - любое число.

А вот и формулы, с помощью которых можно сразу записать решения этих простейших уравнений.

Для синуса:


Для косинуса:

х = ± arccos a + 2π n, n ∈ Z


Для тангенса:

х = arctg a + π n, n ∈ Z


Для котангенса:

х = arcctg a + π n, n ∈ Z

Собственно, это и есть теоретическая часть решения простейших тригонометрических уравнений. Причём, вся!) Совсем ничего. Однако, количество ошибок по этой теме просто зашкаливает. Особенно, при незначительном отклонении примера от шаблона. Почему?

Да потому, что масса народу записывает эти буковки, не понимая их смысла совершенно! С опаской записывает, как бы чего не вышло...) С этим надо разобраться. Тригонометрия для людей, или люди для тригонометрии, в конце концов!?)

Разберёмся?

Один угол у нас будет равен arccos a, второй: -arccos a.

И так будет получаться всегда. При любом а.

Если не верите, наведите курсор мышки на картинку, или коснитесь рисунка на планшете.) Я изменил число а на какое-то отрицательное. Всё равно, один угол у нас получился arccos a, второй: -arccos a.

Следовательно, ответ можно всегда записать в виде двух серий корней:

х 1 = arccos a + 2π n, n ∈ Z

х 2 = - arccos a + 2π n, n ∈ Z

Объединяем эти две серии в одну:

х= ± arccos а + 2π n, n ∈ Z

И все дела. Получили общую формулу для решения простейшего тригонометрического уравнения с косинусом.

Если вы понимаете, что это не какая-то сверхнаучная мудрость, а просто сокращённая запись двух серий ответов, вам и задания "С" будут по плечу. С неравенствами, с отбором корней из заданного интервала... Там ответ с плюсом/минусом не катит. А если отнестись к ответу делово, да разбить его на два отдельных ответа, всё и решается.) Собственно, для этого и разбираемся. Что, как и откуда.

В простейшем тригонометрическом уравнении

sinx = а

тоже получается две серии корней. Всегда. И эти две серии тоже можно записать одной строчкой. Только эта строчка похитрее будет:

х = (-1) n arcsin a + π n, n ∈ Z

Но суть остаётся прежней. Математики просто сконструировали формулу, чтобы вместо двух записей серий корней, сделать одну. И всё!

Проверим математиков? А то мало ли...)

В предыдущем уроке подробно разобрано решение (безо всяких формул) тригонометрического уравнения с синусом:

В ответе получились две серии корней:

х 1 = π /6 + 2π n, n ∈ Z

х 2 = 5π /6 + 2π n, n ∈ Z

Если мы будем решать это же уравнение по формуле, получим ответ:

х = (-1) n arcsin 0,5 + π n, n ∈ Z

Вообще-то, это недоделанный ответ.) Ученик обязан знать, что arcsin 0,5 = π /6. Полноценный ответ будет:

х = (-1) n π /6 + π n, n ∈ Z

Тут возникает интересный вопрос. Ответ через х 1 ; х 2 (это правильный ответ!) и через одинокий х (и это правильный ответ!) - одно и то же, или нет? Сейчас узнаем.)

Подставляем в ответ с х 1 значения n =0; 1; 2; и т.д., считаем, получаем серию корней:

х 1 = π/6; 13π/6; 25π/6 и так далее.

При такой же подстановке в ответ с х 2 , получаем:

х 2 = 5π/6; 17π/6; 29π/6 и так далее.

А теперь подставляем значения n (0; 1; 2; 3; 4...) в общую формулу для одинокого х . Т.е возводим минус один в нулевую степень, затем в первую, вторую, и т.д. Ну и, разумеется, во второе слагаемое подставляем 0; 1; 2 3; 4 и т.д. И считаем. Получаем серию:

х = π/6; 5π/6; 13π/6; 17π/6; 25π/6 и так далее.

Вот всё и видно.) Общая формула выдаёт нам точно такие же результаты, что и два ответа по отдельности. Только все сразу, по порядочку. Не обманули математики.)

Формулы для решения тригонометрических уравнений с тангенсом и котангенсом тоже можно проверить. Но не будем.) Они и так простенькие.

Я расписал всю эту подстановку и проверку специально. Здесь важно понять одну простую вещь: формулы для решения элементарных тригонометрических уравнений есть, всего лишь, краткая запись ответов. Для этой краткости пришлось вставить плюс/минус в решение для косинуса и (-1) n в решение для синуса.

Эти вставки никак не мешают в заданиях, где нужно просто записать ответ элементарного уравнения. Но если надо решать неравенство, или далее нужно что-то делать с ответом: отбирать корни на интервале, проверять на ОДЗ и т.п, эти вставочки могут запросто выбить человека из колеи.

И что делать? Да либо расписать ответ через две серии, либо решать уравнение/неравенство по тригонометрическому кругу. Тогда исчезают эти вставочки и жизнь становится легче.)

Можно подвести итоги.

Для решения простейших тригонометрических уравнений существуют готовые формулы ответов. Четыре штуки. Они хороши для мгновенной записи решения уравнения. Например, надо решить уравнения:


sinx = 0,3

Легко: х = (-1) n arcsin 0,3 + π n, n ∈ Z


cosx = 0,2

Без проблем: х = ± arccos 0,2 + 2π n, n ∈ Z


tgx = 1,2

Запросто: х = arctg 1,2 + π n, n ∈ Z


ctgx = 3,7

Одной левой: x= arcctg3,7 + π n, n ∈ Z

cos x = 1,8

Если вы, блистая знаниями, мгновенно пишете ответ:

х= ± arccos 1,8 + 2π n, n ∈ Z

то блистаете вы уже, это... того... из лужи.) Правильный ответ: решений нет. Не понимаете, почему? Прочитайте, что такое арккосинус. Кроме того, если в правой части исходного уравнения стоят табличные значения синуса, косинуса, тангенса, котангенса, - 1; 0; √3; 1/2; √3/2 и т.п. - ответ через арки будет недоделанным. Арки нужно обязательно перевести в радианы.

А если уж вам попалось неравенство, типа

то ответ в виде:

х πn, n ∈ Z

есть редкая ахинея, да...) Тут надо по тригонометрическому кругу решать. Чем мы и займёмся в соответствующей теме.

Для тех, кто героически дочитал до этих строк. Я просто не могу не оценить ваши титанические усилия. Вам бонус.)

Бонус:

При записи формул в тревожной боевой обстановке, даже закалённые учёбой ботаны частенько путаются, где πn, а где 2π n. Вот вам простой приёмчик. Во всех формулах стоит πn. Кроме единственной формулы с арккосинусом. Там стоит 2πn. Два пиэн. Ключевое слово - два. В этой же единственной формуле стоят два знака в начале. Плюс и минус. И там, и там - два.

Так что, если вы написали два знака перед арккосинусом, легче вспомнить, что в конце будет два пиэн. А ещё наоборот бывает. Пропустит человек знак ± , доберётся до конца, напишет правильно два пиэн, да и спохватится. Впереди-то два знака! Вернётся человек к началу, да ошибку-то и исправит! Вот так.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Простейшими тригонометрическими уравнениями называют уравнения

Cos (x) = a, sin (x) = a, tg (x) = a, ctg (x) =a

Уравнение cos (x) = a

Объяснение и обоснование

  1. Корни уравнения cosx = а. При | a | > 1 уравнение не имеет корней, по-скольку | cosx | < 1 для любого x (прямая y = а при а > 1 или при а < -1 не пересекает график функцииy = cosx).

Пусть | а | < 1. Тогда прямая у = а пересекает график функции

у = cos х. На промежутке функция y = cos x убы-вает от 1 до -1. Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение cos x = а имеет на этом промежутке только один корень, который по опреде-лению арккосинуса равен: x 1 = arccos а (и для этого корня cos x = а).

Косинус — четная функция, поэтому на промежутке [-п; 0] уравнение cos x = а также имеет только один корень — число, противоположное x 1 , то есть

x 2 = -arccos а.

Таким образом, на промежутке [-п; п] (длиной 2п) уравнение cos x = а при | а | < 1 имеет только корни x = ±arccos а.

Функция y = cos x периодическая с периодом 2п, поэтому все остальные корни отличаются от найденных на 2пп (n € Z). Получаем следующую фор-мулу корней уравнения cos x = а при

x = ±arccos а + 2пп, n £ Z.

  1. Частные случаи решения уравнения cosx = а.

Полезно помнить специальные записи корней уравнения cos x = а при

а = 0, а = -1, а = 1, которые можно легко получить, используя как ори-ентир единичную окружность.

Поскольку косинус равен абсциссе соответствующей точки единичной окружности, получаем, что cos x = 0 тогда и только тогда, когда соответ-ствующей точкой единичной окружности является точка A или точка B.

Аналогично cos x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C, следовательно,

x = 2πп, k € Z.

Также cos х = —1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка D, таким образом, х = п + 2пn,

Уравнение sin (x) = a

Объяснение и обоснование

  1. Корни уравнения sinx = а. При | а | > 1 уравнение не имеет корней, по-скольку | sinx | < 1 для любого x (прямая y = а на рисунке при а > 1 или при а < -1 не пересекает график функции y = sinx).

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Тригонометрические уравнения.

Простейшие тригонометрические уравнения.

Методы решения тригонометрических уравнений.

Тригонометрические уравнения. Уравнение, содержащее неизвестное под знаком тригонометрической функции, называется тригонометрическим .

Простейшие тригонометрические уравнения.



Методы решения тригонометрических уравнений. Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида (см. выше ) и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.

1. Алгебраический метод. Этот метод нам хорошо известен из алгебры

(метод замены переменной и подстановки).

2. Разложение на множители. Этот метод рассмотрим на примерах.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е. Перенесём все члены уравнения влево:

Sin x + cos x – 1 = 0 ,

Преобразуем и разложим на множители выражение в

Левой части уравнения:

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е. cos 2 x + sin x · cos x sin 2 x – cos 2 x = 0 ,

Sin x · cos x – sin 2 x = 0 ,

Sin x · (cos x – sin x ) = 0 ,

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е. cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

Cos 4x · (cos 2x – cos 4x ) = 0 ,

Cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

3.

Приведение к однородному уравнению. Уравнение называется однородным от носительно sin и cos , если все его члены одной и той же степени относительно sin и cos одного и того же угла . Чтобы решить однородное уравнение, надо:

а ) перенести все его члены в левую часть;

б ) вынести все общие множители за скобки;

в ) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos (или sin ) в старшей степени;

д ) решить полученное алгебраическое уравнение относительно tan .

П р и м е р. Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е. 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

Sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

Tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

Корни этого уравнения: y 1 = - 1, y 2 = - 3, отсюда

1) tan x = –1, 2) tan x = –3,

4. Переход к половинному углу. Рассмотрим этот метод на примере:

П р и м е р. Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е. 6 sin (x / 2) · cos (x / 2) – 5 cos ² (x / 2) + 5 sin ² (x / 2) =

7 sin ² (x / 2) + 7 cos ² (x / 2) ,

2 sin ² (x / 2) – 6 sin (x / 2) · cos (x / 2) + 12 cos ² (x / 2) = 0 ,

tan ² (x / 2) – 3 tan (x / 2) + 6 = 0 ,

. . . . . . . . . .

5. Введение вспомогательного угла. Рассмотрим уравнение вида :

a sin x + b cos x = c ,

Где a , b , c – коэффициенты; x – неизвестное.

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого