Понятие о точках максимума минимума функции пример. Как искать точки максимума и минимума функции. Необходимое условие экстремума функции

Функция и исследование ее особенностей занимает одно из ключевых глав в современной математике. Главная составляющая любой функции - это графики, изображающие не только ее свойства, но также и параметры производной данной функции. Давайте разберемся в этой непростой теме. Итак, как лучше искать точки максимума и минимума функции?

Функция: определение

Любая переменная, которая каким-то образом зависит от значений другой величины, может называться функцией. Например, функция f(x 2) является квадратичной и определяет значения для всего множества х. Допустим, что х = 9, тогда значение нашей функции будет равно 9 2 = 81.

Функции бывают самых разных видов: логические, векторные, логарифмические, тригонометрические, числовые и другие. Их изучением занимались такие выдающиеся умы, как Лакруа, Лагранж, Лейбниц и Бернулли. Их труды служат оплотом в современных способах изучения функций. Перед тем как найти точки минимума, очень важно понять сам смысл функции и ее производной.

Производная и ее роль

Все функции находятся в зависимости от их переменных величин, а это значит, что они могут в любой момент изменить свое значение. На графике это будет изображаться как кривая, которая то опускается, то поднимается по оси ординат (это все множество чисел "y" по вертикали графика). Так вот определение точки максимума и минимума функции как раз связано с этими "колебаниями". Объясним, в чем эта взаимосвязь.

Производная любой функции изображается на графике с целью изучить ее основные характеристики и вычислить, как быстро изменяется функция (т.е. меняет свое значение в зависимости от переменной "x"). В тот момент, когда функция увеличивается, график ее производной будет также возрастать, но в любую секунду функция может начать уменьшаться, и тогда график производной будет убывать. Те точки, в которых производная переходит со знака минуса на плюс, называются точками минимума. Для того чтобы знать, как найти точки минимума, следует лучше разобраться с

Как вычислять производную?

Определение и функции подразумевает под собой несколько понятий из Вообще, само определение производной можно выразить следующим образом: это та величина, которая показывает скорость изменения функции.

Математический способ ее определения для многих учеников кажется сложным, однако на самом деле все гораздо проще. Необходимо лишь следовать стандартному плану нахождения производной любой функции. Ниже описано, как можно найти точку минимума функции, не применяя правила дифференцирования и не заучивая таблицу производных.

  1. Вычислить производную функции можно с помощью графика. Для этого необходимо изобразить саму функцию, затем взять на ней одну точку (точка А на рис.) Вертикально вниз провести линию к оси абсцисс (точка х 0), а в точке А провести касательную к графику функции. Ось абсцисс и касательная образуют некий угол а. Для вычисления значения того, насколько быстро возрастает функция, необходимо вычислить тангенс этого угла а.
  2. Получается, что тангенс угла между касательной и направлением оси х является производной функции на маленьком участке с точкой А. Данный метод считается геометрическим способом определения производной.

Способы исследования функции

В школьной программе математики возможно нахождение точки минимума функции двумя способами. Первый метод с помощью графика мы уже разобрали, а как же определить численное значение производной? Для этого потребуется выучить несколько формул, которые описывают свойства производной и помогают преобразовать переменные величины типа "х" в числа. Следующий метод является универсальным, поэтому его можно применять практически ко всем видам функций (как к геометрическим, так и логарифмическим).

  1. Необходимо приравнять функцию к функции производной, а затем упростить выражение, используя правила дифференцирования.
  2. В некоторых случаях, когда дана функция, в которой переменная "х" стоит в делителе, необходимо определить область допустимых значений, исключив из нее точку "0" (по простой причине того, что в математике ни в коем случае нельзя делить на ноль).
  3. После этого следует преобразовать изначальный вид функции в простое уравнение, приравняв все выражение к нулю. Например, если функция выглядела так: f(x) = 2x 3 +38x, то по правилам дифференцирования ее производная равна f"(x) = 3x 2 +1. Тогда преобразуем это выражение в уравнение следующего вида: 3x 2 +1 = 0.
  4. После решения уравнения и нахождения точек "х", следует изобразить их на оси абсцисс и определить, является ли производная в этих участках между отмеченными точками положительной или отрицательной. После обозначения станет ясно, в какой точке функция начинает убывать, то есть меняет знак с минуса на противоположный. Именно таким способом можно найти как точки минимума, так и максимума.

Правила дифференцирования

Самая основная составляющая в изучении функции и ее производной - это знание правил дифференцирования. Только с их помощью можно преобразовывать громоздкие выражения и большие сложные функции. Давайте ознакомимся с ними, их достаточно много, но все они весьма просты благодаря закономерным свойствам как степенных, так и логарифмических функций.

  1. Производная любой константы равна нулю (f(х) = 0). То есть производная f(х) = x 5 + х - 160 примет такой вид: f" (х) = 5x 4 +1.
  2. Производная суммы двух слагаемых: (f+w)" = f"w + fw".
  3. Производная логарифмической функции: (log a d)" = d/ln a*d. Эта формула применима ко всем видам логарифмов.
  4. Производная степени: (x n)"= n*x n-1 . Например,(9x 2)" = 9*2x = 18x.
  5. Производная синусоидальной функции: (sin a)" = cos a. Если sin угла а равен 0,5, то ее производная равна √3/2.

Точки экстремума

Мы уже разобрали, как найти точки минимума, однако существует понятие и точек максимума функции. Если минимум обозначает те точки, в которых функция переходит со знака минуса на плюс, то точками максимума являются те точки на оси абсцисс, на которых производная функции меняется с плюса на противоположный - минус.

Находить можно по вышеописанному способу, только следует учесть, что они обозначают те участки, на которых функция начинает убывать, то есть производная будет меньше нуля.

В математике принято обобщать оба понятия, заменяя их словосочетанием "точки экстремумов". Когда в задании просят определить эти точки, это значит, что необходимо вычислить производную данной функции и найти точки минимума и максимума.

Из данной статьи читатель узнает о том, что такое экстремум функционального значения, а также об особенностях его использования в практической деятельности. Изучение такого концепта крайне важно для понимания основ высшей математики. Эта тема является основополагающей для более глубокого изучения курса.

Вконтакте

Что такое экстремум?

В школьном курсе дается множество определений понятия «экстремум». Данная статья призвана дать самое глубокое и четкое представление о термине для несведущих в вопросе лиц. Итак, под термином понимают, насколько функциональный промежуток приобретает минимальное либо максимальное значение на том или ином множестве.

Экстремум – это и минимальное значение функции, и максимальное одновременно. Различают точку минимума и точку максимума, то есть крайние значения аргумента на графике. Основные науки, в которых используют данный концепт:

  • статистика;
  • машинное управление;
  • эконометрика.

Точки экстремума играют важную роль в определении последовательности заданной функции. Система координат на графике в лучшем виде показывает изменение экстремального положения в зависимости от изменения функциональности.

Экстремумы производной функции

Имеет также место такое явление, как «производная». Она необходима для определения точки экстремума. Важно не путать точки минимума либо максимума с наибольшим и наименьшим значением. Это разные понятия, хотя могут показаться похожими.

Значение функции является основным фактором для определения того, как найти точку максимума. Производная не образуется от значений, а исключительно от крайнего ее положения в том или ином его порядке.

Сама же по себе производная определяется на основе данных точек экстремума, а не наибольшего или наименьшего значения. В российских школах недостаточно четко проводят грань между этими двумя концептами, что влияет на понимание данной темы вообще.

Давайте теперь рассмотрим такое понятие как «острый экстремум». На сегодняшний день выделяют острый минимум значения и острый максимум значения. Определение дано в соответствии с российской классификацией критических точек функции. Концепт точки экстремума лежит в основе нахождения критических точек на графике.

Для определения такого понятия прибегают к использованию теоремы Ферма. Она является важнейшей в ходе изучения крайних точек и дает четкое представление об их существовании в том или ином их виде. Для обеспечения экстремальности важно создать определенные условия для убывания либо возрастания на графике.

Для точного ответить на вопрос «как найти точку максимума», необходимо следовать таким положениям:

  1. Нахождение точной области определения на графике.
  2. Поиск производной функции и точки экстремума.
  3. Решать стандартные неравенства на область нахождения аргумента.
  4. Уметь доказывать, в каких функциях точка на графике определена и непрерывна.

Внимание! Поиск критической точки функции возможен только в случае существования производной не менее второго порядка, что обеспечивается высокой долей наличия точки экстремума.

Необходимое условие экстремума функции

Для того чтобы существовал экстремум, важно, чтобы были как точки минимума, так и точки максимума. В случае если это правило соблюдено лишь частично, то условие существование экстремума нарушается.

Каждая функция в любом положении должна быть продифференцирована с целью выявления ее новых значений. Важно понимать, что случай обращения точки в ноль не является основным принципом нахождения дифференцируемой точки.

Острый экстремум, также как и минимум функции – это крайне важный аспект решения математической задачи с использованием экстремальных значений. Для того чтобы лучше понимать данную составляющую, важно обратиться к табличным значениям по заданию функционала.

Полное исследование значения Построение графика значения
1. Определение точек возрастания и убывания значений.

2. Нахождение точек разрыва, экстремума и пересечение с координатными осями.

3. Процесс определения изменений положения на графике.

4. Определение показателя и направления выпуклости и выгнутости с учетом наличия асимптот.

5. Создание сводной таблицы исследования с точки зрения определения ее координат.

6. Нахождение промежутков возрастания и убывания крайних и острых точек.

7. Определение выпуклости и вогнутости кривой.

8. Построение графика с учетом исследования позволяет найти минимум либо максимум.

Основным элементом при необходимости работы с экстремумами является точное построение его графика.

Школьные учителя не часто уделяют столь важному аспекту максимум внимания, что является грубейшим нарушением учебного процесса.

Построение графика происходит только по итогам исследования функциональных данных, определения острых экстремумов, а также точек на графике.

Острые экстремумы производной функции отображаются на графике точных значений, с использованием стандартной процедуры определения асимптот.

Точки максимума и минимума функции сопровождаются более сложными построениями графика. Это обусловлено более глубокой необходимостью прорабатывать проблему острого экстремума.

Необходимо также находить производную сложной и простой функции, так как это одно из самых главных понятий проблематики экстремума.

Экстремум функционала

Для того чтобы отыскать вышеозначенное значение, необходимо придерживаться следующих правил:

  • определить необходимое условие экстремального отношения;
  • учитывать достаточное условие крайних точек на графике;
  • осуществлять расчет острого экстремума.

Используются также такие понятия, как слабый минимум и сильный минимум. Это необходимо учитывать при определении экстремума и точного его расчета. При этом острый функционал – это поиск и создание всех необходимых условий для работы с графиком функции.

Рассмотрим функцию y = f(x), которая рассматривается на промежутке (а, b).

Если можно указать такую б-окрестность точки х1 принадлежащую промежутку (а, b), что для всех х (х1, б), выполняется неравенство f(x1) > f(x), то y1 = f1(x1) называют максимумом функции y = f{x) см рис.

Максимум функции y = f{x) обоначим через max f(x). Если можно указать такую б-окрестность точки х2 принадлежащую промежутку (а, b), что для всех х принадлежащую О (х2, 6), х не равно х2 выполняется неравенство f(x2) < f(x) , то y2= f(х2) называют минимумом функции y-f{x) (см. рис.).

Пример нахождения максимума смотрите на следующем видео

Минимум функции

Минимум функции у = f(x) обозначим через min f(x). Другими словами, максимумом или минимумом функции у = f(x) называют такое ее значение, которое больше (меньше) всех других значений, принимаемых в точках, достаточно близких к данной и отличных от нее.

Замечание 1. Максимум функции , определяемый неравенством называется строгим максимумом; нестрогий максимум определяется неравенством f(x1) > = f(x2)

Замечание 2. имеют локальный характер (это наибольшее и наименьшее значения функции в достаточно малой окрестности соответствующей точки); отдельные минимумы некоторой функции могут оказаться больше максимумов той же функции

Вследствие этого максимум (минимум) функции называют локальным максимумом (локальным минимумом) в отличие от абсолютного максимума (минимума) — наибольшего (наименьшего) значения в области определения функции.

Максимум и минимум функции называются экстремумом . Экстремумы в находят для построяния графиков функций

Латинское extremum означает «крайнее» значение. Значение аргумента х, при котором достигается экстремум, называется точкой экстремума. Необходимое условие экстремума выражается следующей теоремой.

Теорема . В точке экстремума дифференцируемой функции и ее производная равна нулю.

Теорема имеет простой геометрический смысл: касательная к графику дифференцируемой функции в соответствующей точке параллельна оси Ох

Значения функции и точки максимума и минимума

Наибольшее значение функции

Наменьшее значение функции

Как говорил крестный отец: «Ничего личного». Только производные!

12 задание по статистике считается достаточно трудным, а все потому, что ребята не прочитали эту статью (joke). В большинстве случаев виной всему невнимательность.

12 задание бывает двух видов:

  1. Найти точку максимума / минимума (просят найти значения «x»).
  2. Найти наибольшее / наименьшее значение функции (просят найти значения «y»).
Как же действовать в этих случаях?

Найти точку максимума / минимума

  1. Приравнять ее к нулю.
  2. Найденный или найденные «х» и будут являться точками минимума или максимума.
  3. Определить с помощью метода интервалов знаки и выбрать, какая точка нужна в задании.

Задания с ЕГЭ:

Найдите точку максимума функции

  • Берем производную:



Все верно, сначала функция возрастает, затем убывает - это точка максимума!
Ответ: −15

Найдите точку минимума функции

  • Преобразуем и возьмем производную:

  • Отлично! Сначала функция убывает, затем возрасает - это точка минимума!
Ответ: −2

Найти наибольшее / наименьшее значение функции


  1. Взять производную от предложенной функции.
  2. Приравнять ее к нулю.
  3. Найденный «х» и будет являться точкой минимума или максимума.
  4. Определить с помощью метода интервала знаки и выбрать, какая точка нужна в задании.
  5. В таких заданиях всегда задается промежуток: иксы, найденные в пункте 3, должны входить в данный промежуток.
  6. Подставить в первоначальное уравнение полученную точку максимума или минимума, получаем наибольшее или наименьшее значение функции.

Задания с ЕГЭ:

Найдите наибольшее значение функции на отрезке [−4; −1]


Ответ: −6

Найдите наибольшее значение функции на отрезке


  • Наибольшее значение функции равно «11» при точке максимума (на этом отрезке) «0».

Ответ: 11

Выводы:

  1. 70% ошибок заключается в том, что ребята не запоминают, что в ответ на наибольшее/наименьшее значение функции нужно написать «y» , а на точку максимума/минимума написать «х».
  2. Нет решения у производной при нахождении значений функции? Не беда, подставляй крайние точки промежутка!
  3. Ответ всегда может быть записан в виде числа или десятичной дроби. Нет? Тогда перерешивай пример.
  4. В большинстве заданий будет получаться одна точка и наша лень проверять максимум или минимум будет оправдана. Получили одну точку - можно смело писать в ответ.
  5. А вот с поиском значения функции так поступать не стоит! Проверяйте, что это нужная точка, иначе крайние значения промежутка могут оказаться больше или меньше.

1°. Определение экстремума функции.

Понятие максимума, минимума, экстремума функции двух переменных аналогичны соответствующим понятиям функции одной независимой переменной.

Пусть функция z = f (x ; у) определена в некоторой области D , точка N (x 0 ; y 0) D .

Точка (x 0 ; y 0) называетсяточкой максимума функции z = f (x ; y ), если существует такая -окрестность точки (x 0 ; y 0), что для каждой точки (х;у), отличной от (x 0 ; y 0) из этой окрестности выполняется неравенство f (x ; y ) < f (x 0 ; y 0). На рисунке 12: N 1 - точка максимума, a N 2 - точка минимума функции z = f (x ; y ).

Аналогично определяетсяточкаминимума функции: для всех точек (x 0 ; y 0), отличных от (x 0 ; y 0), из d -окрестности точки (x 0 ; y 0) выполняется неравенство: f (x 0 ; y 0) > f (x 0 ; y 0).

Аналогично определяется экстремум функции трех и большего числа переменных.

Значение функции в точке максимума (минимума) называется максимумом {минимумом) функции.

Максимум и минимум функции называют ее экстремумами.

Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (x 0 ; y 0) сравнивается с ее значениями в точках, достаточно близких к (x 0 ; y 0). В области D функция может иметь несколько экстремумов или не иметь ни одного.

2°. Необходимые условия экстремума.

Рассмотрим условия существования экстремума функции.

Геометрически равенства f " y (x 0 ; y 0) = 0 и f " y (x 0 ; y 0) = 0 означают, что в точке экстремума функции z = f (x ; у) касательная плоскость к поверхности, изображающей функцию f (x ; у), параллельна плоскости О ху, т. к. уравнение касательной плоскости есть z = z 0 .

Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Например, функция имеет максимум в точке О (0;0), но не имеет в этой точке частных производных.

Точка, в которой частные производные первого порядка функции z = f (x ; y ) равны нулю, т. е. f " x = 0, f " y = 0, называется стационарной точкой функции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками.

В критических точках функция может иметь экстремум, а может и не иметь. Равенство нулю частных производных является необходимым, но не достаточным условием существования экстремума. Рассмотрим, например, функцию z = ху. Для нее точка 0(0; 0) является критической (в ней и обращаются в ноль). Однако экстремума в ней функция z = ху не имеет, т. к. в достаточно малой окрестности точки О(0;0) найдутся точки для которых z > 0 (точки I и III четвертей) и z < 0 (точки II и IV четвертей).

Таким образом, для нахождения экстремумов функции в данной области необходимо каждую критическую точку функции подвергнуть дополнительному исследованию.

Стационарные точки находятся путем решения системы уравнений

fх (х, у) = 0, f"у(х,у) = 0

(необходимые условия экстремума ).

Система (1) эквивалентна одному уравнению df(х, у)=0. В общем случае в точке экстремума Р(а, b) функции f(x, у) или df(x, y)=0 , или df(а, b ) не существует.

3°. Достаточные условия экстремума . Пусть Р(а; b) - стационарная точка функции f (х,у), т. е. df(а, b) = 0 . Тогда:

а) если d2f (а, b) < 0 при , то f (а, b ) есть максимум функции f (х, у );

б) если d2f (а, b) > 0 при , то f (а, b )есть минимум функции f (х,у );

в) если d2f (а, b) меняет знак, то f (а, b ) не является экстремумом функции f (х, у).

Приведенные условия эквивалентны следующим: пусть и . Составим дискриминант Δ=AC - B².

1) если Δ > 0, то функция имеет экстремум в точке Р (а; b) а именно максимум, если A<0 (или С<0 ), и минимум, если A>0 (или С>0 );

2) если Δ < 0, то экстремума в точке Р(а; b) нет;

3) если Δ =0, то вопрос о наличии экстремума функции в точке Р(а; b) остается открытым (требуется дальнейшее исследование).

4°. Случай функции многих переменных . Для функции трех и большего числа переменных необходимые условия существования экстремума аналогичны условиям (1), а достаточные условия аналогичны условиям а), б), в) 3°.

Пример . Исследовать на экстремум функцию z=x³+3xy²-15x-12y .

Решение. Найдем частные производные и составим систему уравнений (1):

Решая систему, получим четыре стационарные точки:

Найдем производные 2-го порядка

и составим дискриминант Δ=AC - B² для каждой стационарной точки.

1) Для точки : , Δ=AC-B²=36 -144<0 . Значит в точке экстремума нет.

2) Для точки P2: А=12, B=6, С=12; Δ=144-36>0, A>0 . В точке Р2 функция имеет минимум. Минимум этот равен значению функции при х=2, у=1: zmin=8+6-30-12=-28 .

3) Для точки : A= -6, B=-12, С= -6; Δ = 36-144 <0 . Экстремума нет.

4) Для точки Р 4: A=-12, B=-6, С=-12; Δ=144-36>0 . B точке Р4 функция имеет максимум, равный Zmах=-8-6+30+12=28 .

5°. Условный экстремум . В простейшем случае условным экстремумом функции f (х,y ) называется максимум или минимум этой функции, достигнутый при условии, что ее аргументы связаны уравнением φ(х,у)=0 (уравнение связи ). Чтобы найти условный экстремум функции f (х, у ) при наличии соотношения φ(х,у) = 0 , составляют так называемую функцию Лагранжа

F (x , y )= f (x , y )+ λφ (x , y ),

где λ - неопределенный постоянный множитель, и ищут обычный экстремум этой вспомогательной функции. Необходимые условия экстремума сводятся к системе трех уравнений

с тремя неизвестными х, у, λ , из которой можно, вообще говоря, определить эти неизвестные.

Вопрос о существовании и характере условного экстремума решается на основании изучения знака второго дифференциала функции Лагранжа

для испытуемой системы значений х, у, λ , полученной из (2) при условии, что и связаны уравнением

.

Именно, функция f (х,y ) имеет условный максимум, если d²F< 0, и условный минимум, если d²F>0 . В частности, если дискриминант Δ для функции F(х,у} в стационарной точке положителен, то в этой точке имеется условный максимум функции f (х, у ), если A< 0 (или С< 0), и условный минимум, если А > О (или С>0 ).

Аналогично находится условный экстремум функции трех или большего числа переменных при наличии одного или нескольких уравнений связи (число которых, однако, должно быть меньше числа переменных). Здесь приходится вводить в функцию Лагранжа столько неопределенных множителей, сколько имеется уравнений связи.

Пример. Найти экстремум функции z =6-4 x -3 y при условии, что переменные х и у удовлетворяют уравнению x²+y²=1 .

Решение. Геометрически задача сводится к нахождению наибольшего и наименьшего значений аппликаты z плоскости z=6 - 4х - Зу для точек пересечения ее с цилиндром х2+у2=1.

Составляем функцию Лагранжа F(x,y)=6 -4x -3y+λ(x2+y2 -1 ).

Имеем . Необходимые условия дают систему уравнений

решая которую найдем:

.

,

d ² F =2 λ (dx ²+ dy ²).

Если и , то d ² F >0 , и, следовательно, в этой точке функция имеет условный минимум. Если и , то d ² F <0, и, следовательно, в этой точке функция имеет условный максимум.

Таким образом,

6°. Наибольшее и наименьшее значения функции.

Пусть функция z = f (x ; у) определена и непрерывна в ограниченной замкнутой области . Тогда она достигает в некоторых точках своего наибольшего М и наименьшего т значений (т. н. глобальный экстремум). Эти значения достигаются функцией в точках, расположенных внутри области , или в точках, лежащих на границе области.